

The Gerber File Format
Specification

A format developed by Ucamco

November 2013

Revision J1

Gerber X2
The Second Extension

Chapter 5 is a draft for public review
We request comments from the user community before we freeze the
specification. The review period ends end January 2014.

If you have no comments but support object to the ideas in this revision, a
brief mail would be much appreciated.

Send comments to gerber@ucamco.com.

mailto:gerber@ucamco.com

Copyright Ucamco NV. i

Contents

Contents ... i

Figures ... v

Tables ... vi

Preface ... vii

1 Introduction .. 8

1.1 Info, Questions & Feedback .. 8

1.2 Record of Revisions .. 8

1.2.1 Revision I1 ... 8

1.2.2 Revision I2 ... 9

1.2.3 Revision I3 ... 9

1.2.4 Revision I4 ... 9

1.2.5 Revision J1 ... 9

1.3 Conformance ... 9

1.4 About this Document ... 10

1.4.1 Scope ... 10

1.4.2 Formatting and Syntax Rules ... 10

1.4.3 References ... 11

1.4.4 Copyright and Intellectual Property ... 11

1.5 History of the Gerber File Format .. 12

1.6 About Ucamco ... 12

2 Overview of the Gerber Format ... 13

2.1 File Structure ... 13

2.2 Graphics .. 13

2.2.1 Graphics Objects .. 13

2.2.2 Dark and Clear Polarity .. 14

2.2.3 Operation Codes .. 14

2.2.4 Stroking .. 14

2.2.5 Graphics State.. 15

2.3 Attributes ... 17

2.4 Example Files .. 17

2.4.1 Example 1 .. 18

2.4.2 Example 2 .. 19

2.4.3 Example 3 .. 23

2.5 Glossary .. 26

Copyright Ucamco NV. ii

3 Syntax ... 28

3.1 Character Set .. 28

3.2 Variable Types .. 28

3.2.1 Integers .. 28

3.2.2 Decimals .. 28

3.2.3 Names .. 28

3.2.4 Strings .. 28

3.3 Data Blocks ... 29

3.4 Statements .. 30

3.4.1 Statements Overview ... 30

3.4.2 Function Codes .. 31

3.4.3 Coordinate Data Blocks .. 31

3.4.4 Parameters ... 32

4 Graphics ... 34

4.1 Graphics Overview .. 34

4.2 Linear Interpolation (G01) .. 37

4.2.1 Data Block Format .. 37

4.3 Circular Interpolation (G02/G03, G74/G75).. 38

4.3.1 Arc Overview .. 38

4.3.2 Arc Definition .. 38

4.3.3 Single Quadrant Mode .. 39

4.3.4 Multi Quadrant Mode .. 43

4.3.5 Arc Example ... 44

4.3.6 Numerical instability in multi quadrant (G75) arcs 45

4.3.7 Using G74 or G75 can result in a different image 45

4.4 Operation Codes (D01/D02D03) .. 46

4.5 Regions (G36/G37) ... 49

4.5.1 Region Overview .. 49

4.5.2 Example: a simple contour ... 50

4.5.3 Examples: how to start a single contour ... 52

4.5.4 Examples: Use D02 to start a second contour .. 53

4.5.5 Example fle: Overlapping contours ... 54

4.5.6 Example file: Non-overlapping and touching .. 55

4.5.7 Example file: Overlapping and touching ... 56

4.5.8 Using levels to create holes .. 57

4.5.9 Example: a simple cut-in .. 61

4.5.10 Examples: coincident draws .. 63

4.5.11 Examples: valid and invalid cut-ins .. 65

4.6 Comment (G04) ... 70

4.7 End-of-file (M02) .. 70

4.8 FS – Format Specification ... 70

4.8.1 Coordinate Format ... 70

4.8.2 Zero Omission .. 71

4.8.3 Absolute or Incremental Notation ... 71

Copyright Ucamco NV. iii

4.8.4 Data Block Format .. 72

4.8.5 Examples ... 72

4.9 MO – Mode.. 72

4.9.1 Data Block Format .. 72

4.9.2 Examples ... 73

4.10 IP – Image Polarity .. 73

4.10.1 Positive image polarity .. 73

4.10.2 Negative image polarity ... 73

4.10.3 Data Block Format... 74

4.10.4 Examples .. 74

4.11 AD - Aperture Definition .. 74

4.11.1 Syntax Rules ... 75

4.11.2 Data Block Format .. 75

4.11.3 Aperture Definition with Standard Apertures 77

4.11.4 Examples .. 82

4.12 AM - Aperture Macro ... 82

4.12.1 Data Block Format... 82

4.12.2 Primitives .. 84

4.12.3 Parameter Contents .. 95

4.12.4 Syntax Rules ... 95

4.12.5 Examples .. 100

4.13 SR – Step and Repeat .. 103

4.13.1 Data Block Format... 104

4.13.2 Examples .. 104

4.14 LP – Level Polarity .. 105

4.14.1 Data Block Format... 105

4.14.2 Examples .. 105

5 Attributes .. 106

5.1 Attributes Overview ... 106

5.2 File attributes ... 106

5.2.1 Standard File Attributes .. 107

5.3 Aperture Attributes ... 112

5.3.1 Aperture Attributes Overview .. 112

5.3.2 Aperture Attributes Statements ... 112

5.3.3 Standard Aperture Attributes .. 114

5.3.4 Examples ... 117

6 Most Common Errors & Bad Practice ... 119

6.1 Most Common Errors .. 119

6.2 Most Common Bad Practices .. 120

7 Deprecated Format Elements .. 122

7.1 Coordinate Data Blocks without Operation Code ... 122

Copyright Ucamco NV. iv

7.2 Open Contours .. 122

7.3 Deprecated Statements ... 123

7.3.1 AS – Axis Select ... 125

7.3.2 IN - Image Name .. 125

7.3.3 IR – Image Rotation ... 127

7.3.4 LN – Level Name .. 128

7.3.5 MI – Mirror Image ... 129

7.3.6 OF - Offset ... 130

7.3.7 SF – Scale Factor ... 131

7.4 Deprecated Standard Gerber (RS-274-D) ... 132

7.4.1 Standard Gerber must not be used ... 132

7.4.2 Origin and purpose of Standard Gerber .. 132

7.4.3 Standard Gerber is a NC format, not an image format 134

7.4.4 A fallacy.. 134

Copyright Ucamco NV. v

Figures

1. Linear interpolation using rectangle aperture: example 1 15

2. Linear interpolation using rectangle aperture: example 2 15

3. Example 1: two square boxes ... 18

4. Example 2: various shapes .. 19

5. Example 3: drill file ... 23

6. Gerber file structure .. 30

7. Arc with a non-zero deviation ... 39

8. Nonsensical center point .. 39

9. Single quadrant mode .. 41

10. Single quadrant mode example: arcs and draws 42

11. Single quadrant mode example: resulting image 42

12. Multi quadrant mode example: resulting image....................................... 44

13. Simple contour example: the segments .. 51

14. Simple contour example: resulting image ... 51

15. Use of D02 to start an new non-overlapping contour 53

16. Use of D02 to start an new overlapping contour 54

17. Use of D02 to start an new non-overlapping contour 55

18. Use of D02 to start an new overlapping and touching contour 56

19. Resulting image: first level only .. 58

20. Resulting image: first and second levels ... 59

21. Resulting image: first, second and third levels .. 59

22. Resulting image: all four levels ... 60

23. Simple cut-in: the segments ... 62

24. Simple cut-in: the image ... 62

25. Coincident edges in contours, example 1 ... 63

26. Coincident edges in contours, example 2 ... 64

27. Cut-in example 2: valid, coincident segments ... 66

28. Cut-in example 2: resulting image .. 67

29. Cut-in example 3: invalid, overlapping segments 69

30. Circles with different holes .. 77

31. Rectangles with different holes ... 78

32. Obrounds with different holes ... 79

33. Polygons with different holes .. 81

34. Circle primitive .. 85

35. Line (vector) primitive ... 86

36. Line (center) primitive ... 87

37. Line (lower left) primitive ... 88

38. Outline primitive .. 89

39. Polygon primitive .. 91

40. Moiré primitive .. 92

41. Thermal primitive .. 94

42. Rotated triangle .. 102

43. Step and Repeat .. 103

Copyright Ucamco NV. vi

Tables

Document conventions ... 11

Graphics parameters .. 35

Function codes ... 36

Quadrant modes ... 38

Arithmetic operators .. 96

Standard file attributes .. 107

.FileFunction file attribute values ... 109

.Part file attribute values ... 110

Aperture attribute parameters ... 112

.AperFunction aperture attribute values .. 116

Reported Common Errors ... 120

Comon Poor/good practices .. 121

Deprecated codes ... 123

Deprecated parameters .. 124

Deprecated graphics state variables ... 124

Copyright Ucamco NV. vii

Preface

The Gerber file format is the de facto standard for printed circuit board (PCB) image data
transfer. Every PCB design system outputs Gerber files and every PCB front-end engineering
system inputs them. Implementations are thoroughly field-tested and debugged. Its widespread
availability allows PCB professionals to exchange image, drill and route data securely and
efficiently. It has been called “the backbone of the electronics manufacturing industry”.

The Gerber file format is simple, compact and unequivocal. It describes an image with very high
precision, up to 1 nm. It is complete: one single file describes one single image. It is portable and
easy to debug by its use of printable 7-bit ASCII characters. A well-constructed Gerber file
precisely defines the PCB image and the functions of the different image elements.

Unfortunately, some applications generate poorly constructed Gerber files. Especially
troublesome is the use of painting or stroking to create pads and copper areas. Poorly
constructed files take longer to process, require more manual work and increase the risk of
errors. Such problems are sometimes incorrectly blamed on the Gerber file format itself.

These problems may result from misunderstanding the specification or the capabilities of the
format. With more than 25 years of experience in CAM software we at Ucamco know which
areas are most often misunderstood. We continuously refine the format specification to clarify
these areas and recommend proper constructions. Our aim is to make Gerber files safer and
more efficient, making fabrication more reliable, faster and cheaper.

The current Gerber file format is RS-274X or Extended Gerber. Standard Gerber or RS-274-D is
deprecated. Standard Gerber does not have a single advantage over Extended Gerber. It has
many disadvantages. It is not an image description format but an NC format constrained by the
technology from the 1960s and 1970s. It is simply not suited for reliable automatic image data
transfer. Do not use Standard Gerber any longer.

Although other data transfer formats have come into the market, they have not displaced the
Gerber file format. The reason is simple. Most of the problems in data transfer are due not to
limitations in the Gerber file format but to poor practices. To quote a PCB manufacturer: “If we
would only receive proper Gerber files, it would be a perfect world.” The new formats are more
complex and less transparent to the user. New implementations inevitably have bugs. Common
poor practices in more complex formats make matters worse, not better. The industry has not
adopted new formats. Gerber remains the standard.

The emergence of Gerber as a standard for image exchange is the result of efforts by many
individuals who developed outstanding software for Gerber files. Without their dedication the
widespread acceptance of a de-facto standard could not have been achieved. Ucamco thanks
these dedicated individuals.

Karel Tavernier

Managing Director,
Ucamco

Copyright Ucamco NV. 8

1 Introduction

1.1 Info, Questions & Feedback
Correspondence regarding this publication or questions about the Gerber File Format can be
mailed to gerber@ucamco.com

or sent to

Ucamco NV
Bijenstraat 19,
B-9051 Gent,
Belgium

For more information see www.ucamco.com

1.2 Record of Revisions

1.2.1 Revision I1

General. The entire specification has been reviewed for clarity. Existing warnings and notes
were clarified and new ones added. The quality of the text and the drawings has been improved.

Deprecated elements. Format elements that are rarely used and superfluous or prone to
misunderstanding have been deprecated. They are grouped together in the second part of this
document. The first part contains the current format, which is clean and frugal. We urge all
creators of Gerber files no longer to use deprecated elements of the format.

Graphics state and operation codes. The underlying concept of the graphics state and
operation codes is now explicitly described. See section 2.2.3 and 2.2.2. We urge all providers
of Gerber software to review their implementation in the light of these sections.

Defaults. In previous revisions the definitions of the default values for the modes were scattered
throughout the text, or were sometimes omitted. All default values are now unequivocally
specified in an easy-to-read table. See 2.2.2. We urge all providers of Gerber software to review
their handling of defaults.

Rotation of macro primitives. The rotation center of macro primitives was clarified. See
4.12.2. We urge providers of Gerber software to review their handling of the rotation of macro
primitives.

G36/G37. The whole section is now much more specific. An example was added to illustrate
how to use of polarities to make holes in areas, a method superior to cut-ins. See 4.4. We urge
all providers of Gerber software to review their handling of G36/G37 and to use layers to create
holes in areas rather than using cut-ins.

Coordinate data blocks. Coordinate data without D01/D02/D03 in the same data block create
some confusion. It therefore has been deprecated. See 3.4.3. We urge all providers of Gerber
software to review their output of coordinate data in this light.

Maximum aperture number (D-code). In previous revisions the maximum aperture number
was 999. This was insufficient for current needs and numerous files in the market use higher
aperture numbers. We have therefore increased the limit to the largest number that fits in a
signed 32 bit integer.

Standard Gerber. We now define Standard Gerber in relation to the current Gerber file format.
Standard Gerber is deprecated because it has many disadvantages and not a single advantage.
We urge all users of Gerber software not to use Standard Gerber.

mailto:gerber@ucamco.com
http://www.ucamco.com/

Copyright Ucamco NV. 9

Incremental coordinates. These have been deprecated. Incremental coordinates lead to
rounding errors. Do not use incremental coordinates.

Name change: area and contour instead of polygon. Previous revisions contained an object
called a polygon. As well as creating confusion between this object and a polygon aperture, the
term is also a misnomer as the object can also contain arcs. These objects remain unchanged
but are now called areas, defined by their contours. This does not alter the Gerber files.

Name change: level instead of layer. Previous revisions of the specification contained a
construct called a layer. As these were often confused with PCB layers they have been
renamed as levels. This does not alter the Gerber files.

1.2.1.1 Acknowledgement

This revision of the specification was developed by Karel Tavernier and Rik Breemeersch,
advised by Ludek Brukner, Artem Kostyukovich, Jiri Martinek, Adam Newington, Denis Morin,
Karel Langhout and Dirk Leroy.

We thank anyone who has helped us with questions, remarks or suggestions - they are too
many to mention by name. However, we explicitly thank Paul Wells-Edwards who contributed
substantially with insightful comments.

1.2.2 Revision I2

The “exposure on/off” modifier in macro apertures and the holes in standard apertures are
sometimes incorrectly implemented. These features were explained in more detail. Readers and
writers of Gerber files are urged to review their implementation in this light.

1.2.3 Revision I3

Questions about the order and precise effect of the deprecated parameters MI, SF, OF, IR and
AS were clarified. Coincident contour segments were explicitly defined, see 4.5.1.

1.2.4 Revision I4

The parameters LN and IN were deprecated.

The regions overview section 4.5.1 was expanded and examples were added different places in
4.5 to further clarify regions. The chapters on function codes and syntax were restructured. The
constraints on the thermal primitive parameters were made more explicit. Wording was
improved in several places.

1.2.5 Revision J1

Chapter 5 Attributes was added. It adds attributes to the Gerber format. Revision J1 is backward
compatible by design: image generation is not affected.

Revision J1 was developed by Karel Tavernier, Ludek Brukner and Thomas Weyn. They were
assisted by a review group consisting of Roland Polliger, Luc Samyn, Wim De Greve, Dirk Leroy
and Rik Breemeersch.

1.3 Conformance
A Gerber file must comply with all requirements of the specification. If the interpretation of a
construct is not specified or not obvious then that construct is invalid. A file violating any
requirement of the specification or containing any invalid part is wholly invalid. An invalid Gerber

Copyright Ucamco NV. 10

file is meaningless and does not represent an image. There is no correct or incorrect
interpretation of an invalid Gerber file.

Current Gerber file writers must not use deprecated elements of the format. However, as
deprecated elements may be present in legacy files, a Gerber file reader may choose to
implement or not implement their handling.

A Gerber file reader must render a valid file according to this specification. There is no
mandatory behavior on reading an invalid Gerber file, except that a warning must be given on
unknown codes and parameters to prepare for future versions of the Gerber format that may
include new codes or parameters. Consequently, it is not mandatory to report any other error in
the Gerber file as this imposes an unreasonable burden on readers. A reader is allowed to
generate an image on an invalid file, as a diagnostic help or in an attempt to guess the intended
image by ‘reading between the lines’. However, as an invalid Gerber file is meaningless, it
cannot be alleged any such image is correct or incorrect.

A Gerber file writer must write files according to this specification. All the non-deprecated
elements can be used. The writer is not required to take into account limitations or errors in
particular readers. The writer may assume that a valid file will be processed correctly.

The responsibilities are obvious and plain. Writers must write valid files and readers must
process such files correctly. Writers are not responsible to navigate around problems in the
readers, nor are readers responsible to solve problems in the writers.

This document specifies the Gerber format. Gerber viewers are useful but are not the reference
and do not overrule this document.

1.4 About this Document

1.4.1 Scope

This specification describes the Gerber file format, a digital format for representing a bi-level
image. The specification is intended for the developers of Gerber software that reads as well as
for user of such software.

The Gerber format is widely used in the printed circuit board (PCB) industry, but also in other
industries. The specification sometimes uses the terminology of PCB computer-aided
manufacturing (CAM) because it is tightly related to the semantics and interpretation of the
Gerber file format. A basic knowledge about PCB CAM is helpful in understanding this
specification.

1.4.2 Formatting and Syntax Rules

The following font formatting rules are used in this specification:

 Examples of Gerber file content are written with mono-spaced font, e.g. X0Y0D02*

 Syntax rules are written with bold font, e.g. <Elements set>: {<Elements>}

The syntax rules are described using the following conventions:

 Optional items enclosed in square brackets, e.g. [<Optional element>]

 Items repeating zero or more times are enclosed in braces, e.g.

 <Elements set>: <Element>{<Element>}

 Alternative choices are separated by the ‘|’ character, e.g. <Option A>|<Option B>

Grouped items are enclosed in regular parentheses, e.g. (A|B)(C|D)

The following conventions are used:

Copyright Ucamco NV. 11

 Note: Provides essential extra information.

 Tip: Provides useful extra information.

 Example: Contains examples of file syntax and semantics.

 Warning: Contains an important warning.

Document conventions

1.4.3 References

American National Standard for Information Systems — Coded Character Sets — 7-Bit
American National Standard Code for Information Interchange (7-Bit ASCII), ANSI X3.4-1986

Bible, Mark 7:35

1.4.4 Copyright and Intellectual Property

© Copyright Ucamco NV, Gent, Belgium

All rights reserved. No part of this document or its content may be re-distributed, reproduced or
published, modified or not, in any form or in any way, electronically, mechanically, by print,
photo print, microfilm or any other means without prior written permission from Ucamco.

Ucamco developed the Gerber file format. The Gerber file format and this document are the
sole property of Ucamco. Gerber Format is an Ucamco registered trade mark.

By using this document, developing software interfaces based on this format, or using the name
Gerber forma, users agree not to (i) rename the Gerber Format; (ii) associate the Gerber
Format with data that does not conform to the Gerber file format specification; (iii) develop
derivative versions, modifications or extensions without prior written approval by Ucamco; (iv)
make alternative interpretations of the data; (v) communicate that the Gerber file format is not
owned by Ucamco or owned by anyone other than Ucamco. Developers of software interfaces
based on this format specification commit to make all reasonable efforts to comply with the
latest specification.

The information contained herein is subject to change without prior notice. Revisions may be
issued from time to time. This document supersedes all previous versions. Users of the Gerber
Format, especially software developers, must check www.ucamco.com to determine whether
any changes have been made.

By publishing this document Ucamco does not grant a license to the intellectual property
contained in it. We encourage users to apply for a license to develop Gerber based software
with Ucamco.

The material, information and instructions are provided AS IS without warranty of any kind.
There are no warranties granted or extended by this document. Ucamco does not warrant,
guarantee or make any representations regarding the use, or the results of the use of the
information contained herein. Ucamco shall not be liable for any direct, indirect, consequential
or incidental damages arising out of the use or inability to use the information contained herein.
No representation or other affirmation of fact contained in this publication shall be deemed to be
a warranty or give rise to any liability of Ucamco. All product names cited are trademarks or
registered trademarks of their respective owners.

http://www.ucamco.com/

Copyright Ucamco NV. 12

1.5 History of the Gerber File Format
The Gerber file format derives its name from the former Gerber Systems Corp., a leading
supplier of photoplotters in its time.

Originally, Gerber used a subset of the EIA RS-274-D format as standard input format for its
vector photoplotters. This subset became known as Standard Gerber. Vector photoplotters are
NC machines, and Standard Gerber is an NC format to drive such machines. It is not really an
image description standard: it requires external data such as aperture shapes to be converted to
an image. In subsequent years, Gerber extended the input format for its range of PCB devices
and it actually became a family of capable image description formats.

In 1998 Gerber Systems Corp. was taken over by Barco and incorporated in its PCB division
Barco ETS, now Ucamco. The variants in the family were pulled together and standardized by
the publication of the first version of this document. It has become the de-facto standard for
PCB image data. It is sometimes called “the backbone of the electronics industry”. Several
revisions of the specification were published over the years, clarifying it and adapting it to
current needs.

The Standard Gerber or RS-274-D format, now obsolete, was deprecated. It deserves a place
of honor in the Museum for the History of Computing but it does not deserve a place in modern
workflows.

1.6 About Ucamco
Ucamco (former Barco ETS) is a market leader in PCB CAM software and imaging systems. We
have more than 25 years of continuous experience developing and supporting leading-edge
front-end tooling solutions for the global PCB industry. We help fabricators world-wide raise
yields, increase factory productivity, and cut enterprise risks and costs.

Today we have more than 1000 laser photoplotters and 5000 CAM systems installed around the
world with local support in every major market. Our customers include the leading PCB
fabricators across the global spectrum. Many of them have been with us for more than 20 years.

Key to this success has been our uncompromising pursuit of engineering excellence in all our
products. For 25 years our product goals have been best-in-class performance, long-term
reliability, and continuous development to keep each user at the cutting-edge of his chosen
technology.

For more information see www.ucamco.com.

http://www.ucamco.com/

Copyright Ucamco NV. 13

2 Overview of the Gerber Format

2.1 File Structure
The Gerber file format is a 2D bi-level vector image file format: the image is defined by
resolution-independent graphics objects.

A single Gerber file specifies a single image A Gerber file is complete: it does not need external
files or parameters to be interpreted. One Gerber file represents one image. One image needs
only one file.

A Gerber file is a stream of statements. A statement can contain function codes, parameters
and/or coordinate data. The stream of statements generates a stream of graphics object which
combined produce the final image.

A Gerber file can be processed in a single pass. This imposes constraints on the sequence in
the statements. For example, the coordinate format and unit must be known to be able to
convert coordinate data to coordinates. Format and unit are set by the FS and MO parameters.
The FS and MO parameters must therefore before the first coordinate.

Each file must end with the end of file data block ‘M02*’.

The preferred extension is “.gbr” or “.GBR”

 Example

G04 Set coordinate format and units in the file header*

%FSLAX25Y25*%

%MOIN*%

G04 From here coordinate data can be interpreted*

…

M02*

2.2 Graphics

2.2.1 Graphics Objects

A Gerber file creates an ordered stream of graphics objects. A graphics object has an image
(shape, size), a position in the plane and a polarity (dark or clear).

There are four types of graphics objects:

 A draw is a straight line segment with a given thickness and either round or square line
endings.

 An arc is circular arc with a given thickness, always with round endings.

 A flash is a replication of an aperture at a given location. An aperture is a basic geometric
shape defined earlier in the file. Apertures are typically flashed many times.

 A region is an area of defined by its contour. A contour is constructed with of linear and
circular segments.

In PCB copper layers, draws and arcs are typically used to create tracks, flashes to create pads
and regions to create copper areas.

Copyright Ucamco NV. 14

2.2.2 Dark and Clear Polarity

The final image of the Gerber file is created by superimposing the objects in order of the stream.
Objects can overlap. A dark object darkens (marks, paints, exposes) its image in the plane. A
clear object clears (unmarks, rubs, erases, scratches) its image in all the lower levels. In other
words, after superposing a clear object, its image is clear, whatever objects were there before.
Subsequent dark objects may again darken the cleared area.

A Gerber file consists of a sequence of levels. From a syntactic point of view a level is a set of
consecutive statements. From the image generation point of view a level is a consecutive set of
graphics object with the same polarity.

The order of the objects within a level does not affect the final image. The order of the levels,
however, typically affects the final image. A Gerber file can be viewed as a sequence of levels
that are superimposed in the order of appearance in the file.

The LP parameter starts a new level and sets its polarity, see 4.13.

2.2.3 Operation Codes

D01, D02 and D03 are the operation codes. They create the graphics objects by operating on
coordinates. A coordinate data block contains the coordinate data followed a single operation
code: each operation code is associated with a single coordinate pair and vice versa.

 Example:

X100Y100D01*

X200Y200D02*

X300Y-400D03*

The operation codes have the following effect.

 D01 creates a straight line segment or a circular segment by interpolating from the current
point to the coordinate pair. This is also called a lights-on move. When region mode is off,
these segments are converted to draw or arc objects by stroking them with the current
aperture, see 2.2.4. When region mode is on these segments form a contour defining a
region, see 4.4.

 D02 moves the current point to the coordinate pair. Nothing is created. This is also called a
lights-off move

 D03 creates a flash object by replicating the current aperture at the coordinate pair.

The operation codes are controlled by the graphics state, see 2.2.5.

2.2.4 Stroking

A draw object is created by stroking a straight line segment with a solid circle or solid rectangle
standard aperture. If stroked with a circle aperture the draw has round endings and its thickness
is equal to the diameter of the circle. The effect of stroking a line segment with a rectangle
aperture is illustrated below:

Copyright Ucamco NV. 15

1. Linear interpolation using rectangle aperture: example 1

If the rectangle aperture is aligned with the draw the result is a draw with a straight line ending:

2. Linear interpolation using rectangle aperture: example 2

 Note: The rectangle is not automatically rotated to align with the draw.

An arc object is created by stroking an arc segment with a solid circle standard aperture. The
arc has round endings and its thickness is equal to the diameter of the circle. An arc segment
cannot be stroked with a rectangle.

The only apertures allowed for stroking are the solid circle and the solid rectangle standard
apertures (line segments only for the rectangle). Other standard apertures or special apertures,
whatever their final shape, cannot be used for stroking.

Zero size apertures can be used for stroking. They create graphic objects without image, which
can be used to transfer non-image information, e.g. reference points.

 Note: Zero-length draws and arcs are allowed. The resulting image is the same as the
flashed aperture. However, the graphic object is a draw or arc, not a flash.

 Note: Any valid aperture can be flashed.

2.2.5 Graphics State

A Gerber file defines a graphics state after each statement.

The operation codes are controlled by the graphics state, see 2.2.3.

Except for the current point, all graphics state variables are set by codes or parameters. They
are modal, which means that their value does not change until explicitly set by a code of
parameter.

Draw Aperture Result of the interpolation

Draw Aperture Result of the interpolation

Copyright Ucamco NV. 16

The value range of the current point is the points in the plane. The current point is set implicitly
by the coordinate data blocks. After a coordinate data block is processed the current point is set
to the coordinate in that block.

The table below lists the graphics state variables. The column ‘Fixed or changeable’ indicates
whether a variable value is fixed during the processing of a file or whether it can be changed.
The column ‘Value at the beginning of a file’ describes the default value at the beginning of each
file; if it is undefined it must be set before it is first needed.

Graphics
state variable

Value range Fixed or
changeable

At the
beginning
of the file

Coordinate
format

See FS parameter Fixed Undefined

Unit Inch or mm
See MO parameter.

Fixed Undefined

Image polarity POS, NEG
See IP parameter

Fixed Positive

Step & Repeat See SR parameter Changeable 1,1,-,-

Level polarity Dark, Clear
See LP parameter.

Changeable Dark

Region mode On/Off. See 4.4. Changeable Off

Current
aperture

Standard or macro
aperture. See AD and
AM parameters.

Changeable Undefined

Quadrant mode Single-, Multi-Quadrant
See G74, G75

Changeable Undefined

Interpolation
mode

See G01, G02, G03 Changeable Undefined

Current point Point in plane Changeable (0,0)

Graphics state variables

 Note: It is more robust to set the modes explicitly at the beginning of the file rather than
rely on the defaults.

The graphics state determines the effect of a coordinate data block. If a state variable is
required but undefined when a coordinate data block is processed the Gerber file is invalid. If a
graphics state variable is not needed then it can remain undefined. For example, if the
interpolation mode is G01 (linear interpolation) then the quadrant mode may remain undefined
because it is not required for interpolating. However if the interpolation mode is switched to G02
or G03 (circular interpolation) the quadrant mode becomes required and thus must be defined.

Copyright Ucamco NV. 17

2.3 Attributes
Where an image simply needs to be rendered, attributes are not necessary, but where that
image must be processed for PCB production, attributes are vital for the correct processing of
the file and its elements. Attributes enable design intent to accompany the images when
transferring PCB design data from CAD to CAM. This is sometimes called rather grandly
“adding intelligence to the image”.

Attributes do not change the image – they simply add information to the file and/or to its
individual graphics elements by annotating them with metadata. Examples of this metadata
might be the function of a flash – so a flash might be annotated with the statement that it is an
SMD pad or a via pad for example, or the whole file might be annotated with its overall function,
making it clear that this is the top solder mask, or a drill map etc.

The attribute syntax as set out in this specification provides a flexible way to add this metadata.
This is independent of the application and semantics of the attributes, and is standardized and
supported in a unified manner whether using standard attributes or custom attributes. Standard
attributes and their semantics are part of this specification. Custom attributes can be created by
third parties to extend the format with proprietary metadata.

Standard attributes are intended for the PCB CAD/CAM workflow. Their use is neither
mandatory nor is it “all or nothing”. It is possible to use just one attribute, all of them or none at
all. That said, their broad use is strongly recommended, as they provide vital information in a
standard way – information that must otherwise be gathered from various documents, unwritten
rules, conversations or guesswork, with all the risks of error and delay that this entails. Where
users cannot for some reason provide all the attributes, or are unsure of their use, they are
encouraged to provide those attributes with which they are comfortable; after all, partial
information is better than no information at all. In professional PCB production the bare
minimum is to set the file function attribute.

It is worth noting here that as attributes do not affect the image, a Gerber reader that ignores or
does not recognize attributes will still generate the correct image.

2.4 Example Files
These annotated samples illustrate the use of the elements of the Gerber file format. If you are
not familiar with the Gerber file format they can give you a feel for it which will make it easier to
read the specification.

Copyright Ucamco NV. 18

2.4.1 Example 1

Example 1 is a single-level image with two square boxes.

3. Example 1: two square boxes

G04 Ucamco ex. 1: Two

square boxes*

A comment

%FSLAX26Y26*% Coordinate format specification:
Leading zeroes omitted
Absolute coordinates
2 digits in the integer part
6 digits in the fractional part

%MOMM*% Unit set to mm

%LPD% Start a new level with dark polarity

%ADD10C,0.010*% Define aperture with D-code 10 as a 0.01 inch circle

D10* Select aperture with D-code 10 as current aperture

X0Y0D02* Move to (0, 0)

G01X5000000Y0D01* Linear interpolation (draw) to (5, 0) with D10

G01Y5000000D01* Draw to (5, 5) with D10

G01X0D01* Draw to (0, 5) with D10

G01Y0D01* Draw to (0, 0) with D10

X6000000D02* Move to (6, 0)

G01X11000000D01* Draw to (11, 0) with D10

G01Y5000000D01* Draw to (11, 5) with D10

G01X6000000D01* Draw to (6, 5) with D10

G01Y0D01* Draw to (6, 0) with D10

M02* End of file

Copyright Ucamco NV. 19

2.4.2 Example 2

Example 2 illustrates the use of levels and various apertures.

4. Example 2: various shapes

G04 Ucamco ex. 2: Shapes* A comment

%FSLAX23Y23*% Format specification:

Leading zeros omitted

Absolute coordinates

Coordinates format is 2.3

%MOIN*% Units are inches

1/1000 inch is a very low resolution, not suited for
production. It is used here to make the file easier to read
by a human.

G04 Define Apertures* Comment

%AMTARGET125* Aperture macro ‘TARGET125’

6,0,0,0.125,.01,0.01,3,0.00

3,0.150,0*%

Moiré primitive

%AMTHERMAL80* Aperture macro ‘THERMAL80’

Copyright Ucamco NV. 20

7,0,0,0.080,0.055,0.0125,45

*%
Thermal primitive

%ADD10C,0.01*% Aperture definition: D10 is a circle with diameter 0.01
inch

%ADD11C,0.06*% Aperture definition: D11 is a circle with diameter 0.06
inch

%ADD12R,0.06X0.06*% Aperture definition: D12 is a rectangle with size 0.06 x
0.06 inch

%ADD13R,0.04X0.100*% Aperture definition: D13 is a rectangle with size 0.04 x
0.1 inch

%ADD14R,0.100X0.04*% Aperture definition: D14 is a rectangle with size 0.1 x
0.04 inch

%ADD15O,0.04X0.100*% Aperture definition: D15 is an obround with size 0.04 x
0.1 inch

%ADD16P,0.100X3*% Aperture definition: D16 is a polygon with 3 vertices and
circumscribed circle with diameter 0.1 inch

%ADD17P,0.100X3*% Aperture definition: D17 is a polygon with 3 vertices and
circumscribed circle with diameter 0.1 inch

%ADD18TARGET125*% Aperture definition: D18 is the special aperture called
‘TARGET125’ defined earlier

%ADD19THERMAL80*% Aperture definition: D19 is the special aperture called
‘THERMAL80’ defined earlier

%LPD*% Start a new level with dark polarity

%SRX1Y1I0J0*% Set ‘Step and Repeat’ to 1 for both X and Y. This is the
default value for ‘Step and Repeat’. The statement is not
required but makes the intention clear.

D10* Select aperture with D-code 10

X0Y250D02* Move current point to (0, 0.25) inch

G01X0Y0D01* Linear interpolation (draw)

G01X250Y0D01* Linear interpolation (draw)

X1000Y1000D02* Move current point

G01X1500D01* Linear interpolation (draw)

G01X2000Y1500D01* Linear interpolation (draw)

X2500D02* Move current point. Since the X and Y coordinates are
modal, Y is not repeated

G01Y1000D01* Linear interpolation. The X coordinate is not repeated
and thus its previous value of 2.5 inch is used

Copyright Ucamco NV. 21

D11* Select aperture with D-code 11

X1000Y1000D03* Flash D11 at (1.0, 1.0). Y is modal.

X2000D03* Flash D11 at (2.0, 1.0). Y is modal.

X2500D03* Flash D11 at (2.5, 1.0). Y is modal.

Y1500D03* Flash D11 at (2.5, 1.5). X is modal.

X2000D03* Flash D11 at (2.0, 1.5). Y is modal.

D12* Select aperture with D-code 12

X1000Y1500D03* Move to (1.0, 1.5) and flash

D13* Select new aperture with D-code 13

X3000Y1500D03* Move to (3.0, 1.5) and flash

D14* Select new aperture with D-code 14

Y1250D03* Move to (3.0, 1.25) and flash

D15* Select new aperture with D-code 15

Y1000D03* Move to (3.0, 1.0) and flash

D10* Select new aperture with D-code 10

X3750Y1000D02* Move current point. This sets the start point for the
following arc interpolation

G75* Set multi quadrant mode

G03X3750Y1000I250J0D01* Interpolate a complete circle

D16* Select new aperture with D-code 16

X3400Y1000D03* Flash D16

D17* Select new aperture with D-code 17

X3500Y900D03* Flash D17

D10* Select new aperture with D-code 10

G36* Start a region

X500Y2000D02* Move current point to (0.5, 2.0)

G01Y3750D01* Linear interpolation (draw)

G01X3750D01* Linear interpolation (draw)

G01Y2000D01* Linear interpolation (draw)

G01X500D01* Linear interpolation (draw)

G37* Create the region by filling the contour

Copyright Ucamco NV. 22

D18* Select new aperture with D-code 18

X0Y3875D03* Flash D18

X3875Y3875D03* Flash D18

%LPC*% Level polarity is clear

G36* Start a region

X1000Y2500D02* Move current point to (1.0, 2.5)

G01Y3000D01* Linear interpolation (draw)

G74* Set single quadrant mode

G02X1250Y3250I250J0D01* Clockwise arc with radius 0.25

G01X3000D01* Linear interpolation (draw)

G75* Set multi quadrant mode

G02X3000Y2500I0J-375D01* Clockwise arc with radius 0.375

G01X1000D01* Linear interpolation (draw)

G37* Create the region by filling the contour

%LPD*% Start a new level with dark polarity

D10* Select new aperture with D-code 10

X1500Y2875D02* Move current point

G01X2000D01* Linear interpolation (draw)

D11* Select aperture with D-code 11

X1500Y2875D03* Flash D11

X2000D03* Flash D11

D19* Select aperture with D-code 19

X2875Y2875D03* Flash D19

M02* End of file

Copyright Ucamco NV. 23

2.4.3 Example 3

Example 3 is drill file with attribute data.

5. Example 3: drill file

%TF.GerberVersion,J1*% Indicates that this file follows the J1 revision of the
Gerber spec

%TF.FileFunction,PTH*% This drill file describes plating through holes.

%TF.Part,Single*% The layer is part of a single PCB

%FSLAX26Y26*% Format specification:
Leading zeros omitted
Absolute coordinates
Coordinate format is 2.6

%MOIN*% Units are inches

%IPPOS*% Image has positive polarity

%TA.DrillTolerance,0.01,0.001*% Set the drill tolerance to 10 mil positive tolerance and 1
mil negative tolerance.
TA defines an aperture attribute, so this will be attached
to apertures until it is deleted using TD.
We say an attribute is entered in the current attribute
directory when it is defined and removed from it when it
is deleted.

%TA.AperFunction,ComponentDrill% Indicates that the following apertures define component
drill holes.

Copyright Ucamco NV. 24

%ADD10C,0.014000*% A circular aperture defining a drill tool that will be used to
drill plated component drill holes with 10 mil positive and
1 mil negative tolerance.

%TA.AperFunction,Other,MySpecial

Drill*%
Indicates that the following apertures are special drill
holes.

%ADD11C,0.024000*% A circular aperture defining a drill tool that will be used to
drill plated special drill holes with 10 mil positive and 1
mil negative tolerance.

%TA.DrillTolerance,0.015,0.015*% Change the drill tolerance for the following apertures to
15 mil in both directions.

%TA.AperFunction,MechanicalDrill

*%
Indicates that the following apertures will be used for
mechanical drill holes.

%ADD12C,0.043000*% A circular aperture defining a drill tool with a tolerance of
15 mil in both directions that will be used for non-plated
mechanical drill holes.

%ADD13C,0.022000*% Another circular aperture with the same attributes but a
smaller diameter.

%TD.AperFunction*% Removes the .AperFunction aperture attribute from the
current attribute directory.

%TD.DrillTolerance*% Removes the .DrillTolerance aperture attribute from the
current attribute directory.

%SRX1Y1I0.000000J0.000000*% Indicates that the following data does not need to be
repeated

G04 layer name:

drillIsMid_356_pd2*
A comment

%LPD*% Start a new level with dark polarity

D10* Select drill tool 10

X242000Y275000D03* Drill plated component drill holes with diameter 14 mil at
indicated coordinates

Y325000D03*

X217000Y300000D03*

X192000Y325000D03*

X292000Y275000D03*

X192000D03*

X292000Y325000D03*

X267000Y300000D03*

D11* Select tool 11

X124000Y0D03* Drill plated special drill holes with diameter 24 mil at

Copyright Ucamco NV. 25

X0Y-124000D03*
indicated coordinates.

X-124000Y0D03*

X88000Y88000D03*

X-88000D03*

X0Y124000D03*

X88000Y-88000D03*

X-88000D03*

D12* Select tool 12

X792000Y350000D03* Drill plated mechanical drill holes with diameter 43 mil at
indicated coordinates

X492000Y-350000D03*

D13* Select tool 13

X767000Y-600000D03* Drill plated mechanical drill holes with diameter 22 mil at
indicated coordinates

X567000D03*

X-233000Y200000D03*

Y400000D03*

Y0D03*

Y-200000D03*

Y-600000D03*

Y-400000D03*

X-33000Y-600000D03*

X167000D03*

X367000D03*

%TF.MD5,b5d8122723797ac635a1814c

04c6372b%
Add a checksum to the file

M02* End of file

 Note: One might be surprised to see drill files represented as Gerber files. Some people
think Gerber cannot define drill information. This is not correct. In a CAD/CAM drill information is
image information: it shows where material must be removed, and this Gerber files do perfectly.
For more information, see 5.2.1.1.

Copyright Ucamco NV. 26

2.5 Glossary

ABSOLUTE POSITION: Position expressed in Cartesian coordinates from the origin
(0, 0).

APERTURE: A shape that is used for stroking or flashing. (The name is historic;
vector photoplotters exposed images on lithographic film by shining light through an
opening, called aperture.)

ARC: Either a graphic object created by stroking a circular interpolation with an
aperture or a contour segment created by a circular interpolation.

ATTRIBUTE: Metadata association with the file as a whole or graphics objects,
providing information without affecting the image.

CIRCULAR INTERPOLATION: Creating an arc.

CLEAR: Clear (unmark, rub, erase, scratch) the shape of a graphic object on the
image plane.

CONTOUR: A closed curve defining a region.

CURRENT POINT: An implicit point in the plane used as a begin point of a circular or
linear interpolation.

DARKEN: Darken (mark, expose, paint) the shape of a image graphic object on the
image plane

DRAW: Either a graphic object created by stroking a linear interpolation with an
aperture or a contour segment created by a linear interpolation.

FILE IMAGE: The entire image defined by the file.

FLASH: A graphic object with the shape of an aperture.

GRAPHICS OBJECT: A flash, draw, arc or region. Graphics objects can be dark or
clear. The image is created by darkening or clearing a stream of graphic objects on
the image area.

HEADER: The beginning of the file until the first operation code is encountered.

INCREMENTAL POSITION: Position expressed as a distance in X and Y from the
current point.

INFORMATION LAYER. See level.

LEVEL: A section of Gerber data. All objects in a level have the same polarity (dark or
clear).

LINEAR INTERPOLATION: Creating a draw.

MULTI QUADRANT MODE: A mode defining how circular interpolation is performed.
In this mode the arc is allowed extend over more than 90°. If the start point of the arc
is equal to the end point the arc is a full circle of 360°.

OPERATION CODES: The codes D01, D02 or D03. They operate on the coordinates.

PARAMETERS: Instructions that specify how the data should be processed.

POLARITY: When applied to the image, positive polarity means the image is positive
black on white, and negative that it is negative. When applied to a level, dark means
that the object exposes or marks the image area in dark and clear means that the
object clears or erases everything underneath it. See also ‘transparent’ and ‘clear’.

POLYGON FILL: This is an old name for region fill. See section 4.4.

Copyright Ucamco NV. 27

REGION: A graphic object with an arbitrary shape defined by its contour.

RESOLUTION: The distance expressed by the least significant digit of coordinate
data. Thus the resolution is the step size of the grid on which all coordinates are
defined.

SINGLE QUADRANT MODE: A mode defining how circular interpolation is performed.
In this mode the arc cannot extend over more than 90°. If the start point of the arc is
equal to the end point, the arc has length zero, i.e. covers 0°.

SPECIAL APERTURE: An aperture whose shape is defined by a macro by the AM
parameter.

STANDARD APERTURE: An aperture with a pre-defined, standard shape.

STEP AND REPEAT: A method by which successive exposures of a single image
block are made to produce a multiple image.

STROKE: To create a draw object (linear interpolation) or an arc object (circular
interpolation).

TRANSPARENT: A property of holes in an aperture. Holes are not really part of the
aperture. They have no effect on the underlying image. Holes do not clear the objects
under them. Objects under a hole are visible. It is as is if one can see through a hole,
hence the term transparent. See also ‘polarity’ and ‘clear’.

Copyright Ucamco NV. 28

3 Syntax

3.1 Character Set
A Gerber file is expressed in 7-bit ASCII characters codes 32 to 126 (i.e. the printable
characters in ANSI X3.4-1986) plus characters codes 10 (LF, Line Feed) and 13 (CR, Carriage
Return). No other characters are valid. Gerber files are therefore printable and human readable.

Following characters are reserved:

 The asterisk ‘*’ is reserved as the end-of-block character.

 The percentage ‘%’ is reserved as the parameter delimiter.

 The comma ‘,’ is reserved as field separator.

 The character code 32 (SP, Space) is reserved for use in comments.

The line separators CR and LF have no effect; they can be ignored when processing the file. It
is recommended to use line separators to improve human readability.

Gerber files are case-sensitive. It is mandatory to use the case as in this specification.

3.2 Variable Types

3.2.1 Integers

Integers are a sequence of digits optionally preceded by a “+” or a “- “. They must fall within the
range of a 32 bit signed integer.

3.2.2 Decimals

Decimals are a sequence of digits with an optional decimal point optionally preceded by a “+” or
a “-“, representing a decimal number.

3.2.3 Names

Names are used to identify macros and variables.

Names must consist of letters (upper or lower case), an underscores (“_”) or a dollar signs (“$””)

or digits. The first character cannot be a digit: Name =[a-zA-Z_$]{[a-zA-Z_$0-9]+}.

Names can be maximally 255 characters long.

Names are case-sensitive: Name ≠ name

3.2.4 Strings

Strings are made up of all valid characters except the reserved characters SP, CR, LF, ‘%’, ‘*’,

and ‘;’. String = [a-zA-Z0-9_+-/!?<>”’(){}.\|&@#]+

Strings can be maximally 65535 characters long.

Strings are case-sensitive: String ≠ string

Copyright Ucamco NV. 29

3.3 Data Blocks
Data blocks are building blocks for a Gerber file. Each data block ends with the mandatory end-
of-block character asterisk ‘*’. Each data block can contain one or more parameters, codes or
coordinates.

 Example:

X0Y0D02*

G01X50000Y0D01*

Data blocks are the low level syntactical elements of a Gerber file. The data blocks can be
semantically interconnected so they form a group that represents a higher level element called a
statement.

Tip: It is recommended to add line separators between data blocks for readability. Do not
put a line separator within a data block, except after a comma separator in long data blocks.
The line separators have no effect on the image.

Copyright Ucamco NV. 30

3.4 Statements

3.4.1 Statements Overview

Statements are higher level semantic elements of a Gerber file. Each statement contains one or
more data blocks. Many statements consist of a single data block. If a statement contains
parameters then it starts and ends with a ‘%’character. It is then called a parameter statement.

A Gerber file consists of a stream of statements. There is no limitation on the number of
statements in a Gerber file.

The structure of a Gerber file is shown in the picture below:

6. Gerber file structure

A Gerber file must end with ‘M02*, the 'end of file' data block.

The syntax of a statement is as follows:

<Statement>: [%]<Data Block>{<Data Block>}[%]

Copyright Ucamco NV. 31

Below are examples of statements.

 Example:

G02X0Y100I-400J100D01*

In the example above the statement consists of a single data block that represents G02 and
D01 function code together with a coordinate and offset in X and Y.

 Example:

%AMDONUTFIX*1,1,0.100,0,0*1,0,0.080,0,0*%

In this example the parameter statement contains an AM parameter built of three data blocks.

There are three statement types:

 Function codes. See 3.4.2.

 Coordinate data. See 3.4.3.

 Parameters. See 3.4.4.

3.4.2 Function Codes

Function codes are either

 Operation codes, operating on coordinate data, i.e. D01, D02 or D03.

 Codes that set a graphics state variable.

 Example:

G74*

If a code is located in the same data block as coordinate data, the graphics state is first
changed before the operation code operates on the coordinate data.

In the example below there are two data blocks. In the first block the function code 'G01' is
followed by coordinate data. The G01 function code means 'start linear interpolation' and the
coordinate data means the starting point (300, 200) for the interpolation. In the second data
block the next interpolation point (1100, 200) is specified.

 Example:

G01X300Y200D02*

G01X1100Y200D01*

Function codes are described in detail in chapter 0.

3.4.3 Coordinate Data Blocks

A coordinate data block consists of coordinate data followed by an operation code D01, D02 or
D03. The code operates on the coordinate data.

A coordinate data block is expressed as follows:

<Coordinate data>: [X<Number>][Y<Number>][I<Number>][J<Number>](D01|D02|D03)

Copyright Ucamco NV. 32

Syntax Comments

X, Y Characters indicating X or Y coordinates of a point

I, J Characters indicating an offset in the X or Y direction

<Number> Decimal digits, possibly with a sign defining either a coordinate (X,Y) or an
offset (I,J).

D01|D02|D03 Function codes that determine the effect of the coordinate preceding it.
Their meaning is explained below.

The FS and MO parameters specify how to interpret the digits following the X, Y, I, J characters.

Coordinate data define points in the plane using a right-handed ortho-normal coordinate system.
The plane is infinite, but implementations can have size limitations.

Each coordinate data block must end with a one and only one operation code (D01, D02 or
D03). The operation code operates on the preceding coordinate data.

Coordinates are modal. If an X is omitted the X coordinate of the current point is used. The
same applies to Y.

Offsets are not modal. If I or J is omitted the default is zero (0). The offsets do not affect the
current point.

 Examples of coordinate data blocks

X200Y200D02* point (+200, +200) and offset (0, 0) operated upon by D02

Y-300D03* point (+200, -300) and offset (0, 0) operated upon by D03

I300J100D01* point (+200, -300) and offset (+300, +100) operated upon by D01

Y200I50J50D01* point (+200,+200) and offset (+50, +50) operated upon by D01

X200Y200I50J50D01* point (+200, +200) and offset (+50, +50) operated upon by D01

X+100I-50D01* point (+100, +200) and offset (-50, 0) operated upon by D01

As X and Y are modal in a coordinate data block, in a data block without explicit X nor Y, the
previous X and Y is used. In the example below D03 operates on the current point.

 Example

D03*

3.4.4 Parameters

Parameters define characteristics of the file.

 Note: Originally parameters were called Mass Parameters.

Parameters operating on the entire image must be placed in the header of the file. Other
parameters are placed at the appropriate location in the file.

Parameters consist of a two-character parameter code followed by parameter data. The
parameter code indicates which parameter is used. The structure of theparameter data depends
on the parameter code.

Copyright Ucamco NV. 33

Parameters are enclosed into a pair of delimiter ‘%’ characters. Usually a parameter consists of
a single data block ending with a ‘*’. The AM parameter can include more than one data block.

The ‘%’ must immediately follow the ‘*’ of the last data block without intervening line separators.
This is an exception to the general rule that a data block can be followed by a line separator.

 Examples:

%FSLAX23Y23*%

%AMDONUTFIX*1,1,0.100,0,0*1,0,0.080,0,0*%

Parameters may be provided single or grouped between ‘%’ delimiters, up to a maximum of
4096 characters between these delimiters.

 Example:

%SFA1.0B1.0*ASAXBY*%

Line separators are permitted between parameters to improve readability. For a set of
parameters the syntax is:

%<Parameter>{{<Line separator>}<Parameter>}%

 Example:

%SFA1.0B1.0*

ASAXBY*%

 Tip: For readability it is recommended to have one parameter per line.

The syntax for an individual parameter is:

%Parameter code<required modifiers>[optional modifiers]*%

Syntax Comments

Parameter code 2-character code (AD, AM, FS, etc…)

<required modifiers> Must be entered to complete definition

<optional modifiers> May be required depending on the required modifiers

We distinguish two classes of parameters:

 Graphics parameters affect image generation. They define how the function codes
and coordinates are processed.

 Attribute parameters do not affect image generation but associate attributes with
either the file as a whole or with individual graphics objects.

Copyright Ucamco NV. 34

4 Graphics

4.1 Graphics Overview
The stream of graphics objects is generated by processing the stream of graphics statements.
There are two types of graphics statements:

 Function codes

 Graphics parameters.

The difference is largely historic. Basically the function codes effectively generate the objects
while the parameters determine how the function codes and coordinates must be interpreted.

A function code is identified by a code letter followed by a code number. The code letter is either
the uppercase G, D or M. (These letters originate from the original EIA RS-274-D specification.)
Lowercase code letters are not allowed.

Parameters are identified by two upper case letters. Lower case is not allowed.

The tables below give an overview of the function codes and graphics parameters. They are
explained subsequently in this chapter.

 Example of codes and parameters:

G04 Beginning of the file*

%FSLAX25Y25*%

%MOIN*%

%LPD*%

%ADD10C,0.000070*%

X123500Y001250D02

…

M02*

Copyright Ucamco NV. 35

Parameter Name Description Comments

FS Format
Specification

Sets the ‘Coordinate format’
graphics state variable

These parameters
can only be used
once, in the header
of the file. MO Mode

(inch or mm)
Sets the ‘Unit’ graphics state
variable

IP Image Polarity Sets the ‘Image polarity’ graphics
state variable

AD Aperture Definition Assigns a D code number to an
aperture definition

These parameters
can be used
multiple times. It is
recommended to
put them in header
of the file

AM Aperture Macro Defines special apertures which
can be referenced from the AD
parameter

SR Step and Repeat Sets the ‘Step and Repeat’
graphics state variable

These parameters
can be used
multiple times over
the whole file. LP Level Polarity Starts a new level and sets the

‘Level polarity’ graphics state
variable

Graphics parameters

Copyright Ucamco NV. 36

Code Description Comments

D01 Interpolate operation code If region mode is off D01 creates a draw or
arc using the current aperture. Only specific
apertures can be used; see 2.2.4.When
region mode is on D01 creates a contour
segment. The current aperture is not used.
After the object is created the current point
is moved to the coordinate

D02 Move operation code D02 does not create a graphics object but
move the current point to the coordinate.

D03 Flash operation code With region mode is off D03 flashes the
current aperture. D03 is not allowed in
region mode.After the flash is created the
current point is moved to the coordinate

D10 and
higher

Set the current aperture’ Sets the current aperture to a number
defined by an AD parameter.

G01 Set the interpolation mode to
linear

A modifier of the interpolation operation
code D01. See 4.2 and 4.3.

G02 Set the interpolation mode to
‘Clockwise circular interpolation’

G03 Set the interpolation mode to
‘Counterclockwise circular
interpolation’

G04 Ignore data block Used for comments.

G36 Set region mode on. Used to create regions. See 4.4.

G37 Set region mode off.

G74 Set quadrant mode to ’Single
quadrant’

A modifier of the circular interpolation mode.
See dedicated section for more details.

G75 Set quadrant mode to ’Multi
quadrant’

M02 Indicates the end of the file Every file must end in a M02. It can only
occur once, at the end of the file. No data is
allowed after M02.

Function codes

Copyright Ucamco NV. 37

4.2 Linear Interpolation (G01)
Linear interpolation generates a straight line from the current point to the point with X, Y
coordinates specified by the data block. The current point is then set to the X, Y coordinates
specified by the data block. The resulting graphic object is called a ‘draw’.

4.2.1 Data Block Format

The syntax for the linear interpolation code is:

<Linear interpolation>: G(01|1)[X<Coordinate>][Y<Coordinate>][D(01|02)]*

Syntax Comments

G(01|1) G01 or G1 – Sets interpolation mode to ‘Linear interpolation’

X<Coordinate> Defines the X coordinate of the draw end point.

If missing then the previous X coordinate is used.

Y<Coordinate> Defines the Y coordinate of the draw end point.

If missing then the previous Y coordinate is used.

D(01|02) Interpolate/Move operation code

 Example:

G01X0Y250D01*

Copyright Ucamco NV. 38

4.3 Circular Interpolation (G02/G03, G74/G75)

4.3.1 Arc Overview

Circular interpolation generates a circular arc from the current point to the point with X, Y
coordinates specified by the data block; the center of the arc is specified by the offsets I and J.
The current point is then set to the X, Y coordinates specified by the data block.

There are two orientations:

 Clockwise, set by G02

 Counterclockwise, set by G03

The orientation is defined around the center of the arc, moving from begin to end.

There are two quadrant modes:

 Single quadrant mode (G74)

 Multi quadrant mode (G75)

Quadrant mode Comments

Single quadrant
(G74)

In single quadrant mode the arc is not allowed to extend over
more than 90°. The following relation must hold:

0° ≤ A ≤90°, where A is the arc angle

If the start point of the arc is equal to the end point, the arc
has length zero, i.e. it covers 0°. A data block is required for
each quadrant. A minimum of four coordinate data blocks is
required for a full circle.

Multi quadrant
(G75)

In multi quadrant mode the arc is allowed to extend over more
than 90°. To avoid ambiguity between 0° and 360° arcs the
following relation must hold:

0° < A ≤ 360°, where A is the arc angle

If the start point of the arc is equal to the end point, the arc is
a full circle of 360°.

Quadrant modes

The codes G74 and G75 allow switching between the two quadrant modes. A data block
containing G75 turns on multi quadrant mode. Every block following it will be interpreted as multi
quadrant, until cancelled by a G74. A data block containing G74 code turns on single quadrant
mode.

 Warning: A Gerber file containing arcs but without a preceding G74 or G75 code is invalid.

4.3.2 Arc Definition

For an arc to be circular the center must be positioned at exactly the same distance - radius -
from the start point and the end point. The two radii must be equal. The definition of an arc is
then obvious.

However, as Gerber file has a finite resolution, the center point generally cannot be position
such that the radii are exactly equal. Furthermore the software generating the Gerber file

Copyright Ucamco NV. 39

unavoidably adds rounding errors of its own. The two radii are different for almost all real-life
arcs, unavoidably so. We will call the difference between the radii the arc deviation.

This raises the question which curve is represented by a “circular arc” with a positive deviation.

The arc defined as a continuous and monotonous curve starting at the start point and ending at
the end point, approximating the ring with the given center point and radii equal to the start
radius and end radius. See figure 7. Note that this curve is only mathematically circular if the
deviation is zero.

7. Arc with a non-zero deviation

The arc definition has a fuzziness of the order of magnitude of the arc deviation. The writer of
the Gerber file accepts any interpretation within the fuzziness above as valid. If the writer
requires a specific interpretation of the arc he needs to write arcs with lower deviation.

It is not allowed to place the center point close to the line through begin and end point, but not in
between them. Such a construct is nonsensical. See figure 8.

8. Nonsensical center point

Note that self-intersecting contours are not allowed, see 4.4. If any of the valid arc
interpretations turns the contour in a self-intersecting one, the file is invalid, with unpredictable
results.

Most real-life issues resulting from high deviation come from using a low coordinate resolution.
Using high coordinate resolution is an obvious first step to minimize the arc deviation and
potential problems. We recommend using 6 decimal place in imperial and 5 decimal places in
metric.

4.3.3 Single Quadrant Mode

Single quadrant mode is set by a G74 code.

 Example:

G74*

4.3.3.1 Data Block Format

The syntax in single quadrant mode is:

<Circular interpolation>: G(02|2|03|3)[X<Coordinate>][Y<Coordinate>]

 [I<Distance>][J<Distance>][D(01|02)]*

Syntax Comments

G(02|2|03|3) Sets the interpolation mode’:

G02 or G2 – ‘Clockwise circular interpolation’

G03 or G3 – ‘Counterclockwise circular interpolation’

Copyright Ucamco NV. 40

X<Coordinate> Defines the X coordinate of the arc end point.

If missing then the previous X coordinate is used.

Y<Coordinate> Defines the Y coordinate of the arc end point.

If missing then the previous Y coordinate is used.

I<Distance> The distance between the arc start point and the center parallel to
the X axis. The value is always positive. A sign is not allowed. The
sign of the offset to the center is determined implicitly.

If missing then a 0 distance is used.

J<Distance> The distance between the arc start point and the center parallel to
the X axis. The value is always positive. A sign is not allowed. The
sign of the offset to the center is determined implicitly.

If missing then a 0 distance is used.

D(01|02) Interpolate/Move operation code

 Note: Because the sign in offsets is omitted, there are four candidates for the center:
(<Current X> +/- <X distance>, <Current Y> +/- <Y distance>). The center is the candidate that
results in an arc with the specified orientation and not greater than 90°.

 Warning: If the center is not precisely positioned, there may be none or more than one
candidate fits. In that case the arc is invalid. The creator of the file accepts any interpretation.

 Example:

G74*

G03X700Y1000I400J0D01*

4.3.3.2 Image

The coordinates of an arc endpoint and the center distances are interpreted according to the
coordinate format specified by the FS parameter and the unit specified by the MO parameter.
The following image illustrates how arcs are interpolated.

Copyright Ucamco NV. 41

9. Single quadrant mode

4.3.3.3 Example

Syntax Comments

G74*

D10*

X1100Y600D02*

G03X700Y1000I400J0D01*

G03X300Y600I0J400D01*

G03X700Y200I400J0D01*

G03X1100Y600I0J400D01*

X300D02*

G01X1100D01*

X700Y200D02*

G01Y1000D01*

Single quadrant mode

Use aperture D10

Start from (11, 6)

Quarter arc (radius 4) to (7, 10)

Quarter arc (radius 4) to (3, 6)

Quarter arc (radius 4) to (7, 2)

Quarter arc (radius 4) to (11, 6)

Start from (3 ,6)

Draw to (11, 6)

Start from (7, 2)

Draw to (7, 10)

B axis

0,0 A axis

X

Y

J

End point

Start point
(current
point)

Arc center

I

Copyright Ucamco NV. 42

10. Single quadrant mode example: arcs and draws

11. Single quadrant mode example: resulting image

2

4

6

8

10

12

2

4

6

8

10

12

2 4 6 8 10 12

Copyright Ucamco NV. 43

4.3.4 Multi Quadrant Mode

The multi quadrant mode is set by a G75 code.

 Example:

G75*

4.3.4.1 Data Block Format

The syntax in multi quadrant mode is:

<Circular interpolation>: G(02|2|03|3)[X<Coordinate>][Y<Coordinate>]

 [I<Offset>][J<Offset>][D(01|02)]*

Syntax Comments

G(02|2|03|3) Sets the interpolation mode:

G02 or G2 – ‘Clockwise circular interpolation’

G03 or G3 – ‘Counterclockwise circular interpolation’

X<Coordinate> Defines the X coordinate of the arc end point.

If missing then the previous X coordinate is used.

Y<Coordinate> Defines the Y coordinate of the arc end point.

If missing then the previous Y coordinate is used.

I<Offset> Defines the offset or signed distance between the arc start point
and the center measured parallel to the X axis.

If missing then a 0 offset is used.

J<Offset> Defines the offset or signed distance between the arc start point
and the center measured parallel to the X axis.

If missing then a 0 offset is used.

D(01|02) Operation code

 Note: In multi quadrant mode the offsets in I and J are signed. If no sign is present, the
offset is positive.

 Example:

G75*

G03X-300Y-200I-300J400D01*

Copyright Ucamco NV. 44

4.3.5 Arc Example

Syntax Comments

X300Y-200D02*

G75*

G03X-300Y-200I-300J400D01*

G74*G01*

Move to (3, -2)

Set multi quadrant mode

Arc counterclockwise to (-3,-2); offsets from the
start point to the center point are -3 for X and 4 for
Y, i.e. the center point is (0, 2)

Back to linear interpolation mode and G74

12. Multi quadrant mode example: resulting image

End point (-3, -2) Start point (3, -2)

(0, 0)

Arc center (0, 2)

Copyright Ucamco NV. 45

4.3.6 Numerical instability in multi quadrant (G75) arcs

In G75 mode small changes in the position of center point, start point and end point can swap
the large arc with the small one, dramatically changing the image.

This most frequently occurs with very small arcs. Start point and end point are close together. If
the end point is slightly moved it can end on top of the start point. Under G75, if the start point of
the arc is equal to the end point, the arc is a full circle of 360°, see 4.3.1. A small change in the
position of the end point has changed the very small arc to a full circle.

Under G75 rounding must be done carefully. Using high resolution is an obvious prerequisite.
We recommend using 6 decimal places in imperial and 5 decimal places in metric.

The Gerber writer must also consider that the reader unavoidably has rounding errors. Perfectly
exact numerical calculation cannot be assumed. It is the responsibility of the writer to avoid
unstable arcs.

Under G74 arcs are always less than 90° and this numerical instability does not exist. G74 is
intrinsically stable. Another option is not to use very small arcs, e.g. by replacing them with
draws - the error is very small and draws are stable.

4.3.7 Using G74 or G75 can result in a different image

An arc statement can define a completely different image under G74 and G75. The two sample
files below differ only in G74/G75, but they define a dramatically different image.

Syntax Comments

D10*

G01X0Y600D02*

G74

G02X0Y600I500J0D01*

Use aperture D10

Start from (0, 6)

Single quadrant mode

Arc to (0, 6) with radius 5

The resulting image is small dot, an instance of the aperture at position (0, 6)

Syntax Comments

D10*

G01X0Y600D02*

G75

G02X0Y600I500J0D01*

Use aperture D10

Start from (0, 6)

Multi quadrant mode

Arc to (0, 6) with center (5,6)

The image is a full circle.

Warning: It is mandatory to always specify G74 or G75 if arcs are used.

Copyright Ucamco NV. 46

4.4 Operation Codes (D01/D02D03)
D01, D02 and D03 are the operation codes. The operation codes create the graphics objects by
operating on a coordinates.

Syntactically a coordinate data block contains the coordinate data followed its operation code. A
coordinate data block must contain a single (1) operation code: each operation code is
associated with a single coordinate pair and vice versa. (Coordinate data blocks without
operation codes are deprecated.)

 Example:

X100Y100D01*

X200Y200D02*

X300Y-400D03*

The operation codes have the following effect.

 D01 creates a straight line segment (draw) or a circular segment (arc) by interpolating from
the current point to the coordinates. This operation is called to interpolate, to draw, to arc.
(It was also called a lights-on move in days of vector plotters.)

 D02 moves the current point to the coordinates. No graphics object is generated. This
operation is called to move. (It was also called a lights-off move in days of vector plotters.)

 D03 creates a flash object by replicating the current aperture at the coordinate. This
operation is called to flash.

The operation code D03 directly creates a flash object. Sequences of D01 and D02 create
segments that are turned in graphics by object one of two following methods:

 Stroking. The segments are stroked with the current aperture, see 2.2.4.

 Region building. The segments form contour that defines a region, see 4.4.

The region mode setting determines which object generating method is used. When region
mode is off stroking is used, when region mode is on region building is used.

The operation codes are controlled by the graphics state, see 2.2.5.

The function codes G01, G02, G03 can be put together with operation codes in the same data
block. The graphics state is then modified before the operation coded is executed, whatever the
order of the codes.

 Example:

G01X100Y100D01*

X200Y200D01*

G01 sets the interpolation mode to linear and this used to process the coordinate data
X100Y100 from the same data block as well as the coordinate data X200Y200 from the next
data block.

The syntax for G01, G02, G02, D01 and D02 is the following:

<Interpolation>: [G(1|01|2|02|3|03)][<Coordinate data>D(1|01|2|02)]*

Copyright Ucamco NV. 47

The following data blocks are syntactically valid:

G01*

X100Y100D01*

G01X500Y500D01*

X300Y300D01*

G01X100Y100D01*

A valid data block must contain at least one of the parts.

The recommended syntax for the D02 function code is the following:

<Move current point>: [X<Coordinate>][Y<Coordinate>]D02*

Syntax Comments

X<Coordinate> Defines the X coordinate of the new current point.

If missing then the previous X coordinate is used.

Y<Coordinate> Defines the Y coordinate of the new current point.

If missing then the previous Y coordinate is used.

D02 Move operation code.

 Example:

X200Y1000D02*

It is allowed but not recommended to specify G01/G02/G03 together with a D02 (move). The
G01/G02/G03 is then ignored.

The syntax for the D03 function code (‘Flash’ mode) is:

<Flash current aperture>: [X<Coordinate>][Y<Coordinate>]D03*

Syntax Comments

X<Coordinate> Defines the X coordinate of the flash point.

If missing then the previous X coordinate is used.

Y<Coordinate> Defines the Y coordinate of the flash point.

If missing then the previous Y coordinate is used.

D03 Flash operation code

 Example:

X1000Y1000D03*

Copyright Ucamco NV. 48

An example of the use of the function codes G36,G37,G74,G75,…

 Example:

G36*

X200Y1000D02*

G01X1200D01*

G01Y200D01*

G01X200D01*

G01Y600D01*

G01X500D01*

G75*

G03X500Y600I300J0D01*

G74*

G01X200D01*

G01Y1000D01*

G37*

Copyright Ucamco NV. 49

4.5 Regions (G36/G37)

4.5.1 Region Overview

A region is a graphics object defined by its contour(s).

A contour is a sequence of connected draw or arc segments. A pair of segments is said to
connect only if they are defined consecutively, with the second segment starting where the first
one ends. Thus the order in which the segments of a contour are defined is significant.
Nonconsecutive segments that meet or intersect fortuitously are not considered to connect. A
contour is closed: the end point of the last segment must connect to the start point of the first
segment.

The G36 code sets region mode on and G37 sets it off. With region mode on the operation
codes D01 and D02 create the contours. The first D01 encountered in region mode starts the
first contour by creating the first segment. Subsequent D01’s add segments to it. When a D02 is
encountered the contour is considered finished. (Note that a D02 finishes a contour even if the

current point stays the same place as with the data block D02*.) A D02 is only allowed if the

preceding contour is closed. The next D01 encountered starts a new contour. In this way an
unlimited number of contours can be created in the same region.

When a G37 is encountered region mode is turned off and the regions graphics object is
created by filling the contours. Each contour is filled individually. Different contours can touch,
overlap or intersect. The filled area is the union of the filled areas of each individual contour. A
G37 is only allowed if all contours are closed.

Self-intersecting contours are not allowed. No segments can cross, overlap or touch except for
consecutive segments in their connecting endpoints and horizontal or vertical coincident draws.
A pair of draws are said to be coincident if and only if they coincide completely, with the second
draw starting where the first one ends. Any other form of self-touching or self-intersection is not
allowed. For the avoidance of doubt, not allowed are a.o. partially coinciding draws (not sharing
both vertices), diagonal coincident draws, coincident arcs, partially coinciding arcs, arcs tangent
to another arc or to a draw, vertices on a segment but not on its endpoints, vertices with more
than two segments.

Coincident draws allow to create holes in regions with cut-ins. See 4.5.9.

The segments are not graphics objects in themselves; segments are part of region which is the
graphics object. The segments have no thickness. The current aperture has no effect in region
mode.

The only D codes allowed in region mode are D01 and D02; in other words D03 and Dnn
(nn≥10) are not allowed. G codes are allowed. No parameters are allowed.

Warning: Cut-ins should only be used for the simplest configurations. It is not
recommended to create holes (anti-pads) in PCB planes with cut-ins. Regions with many with
cut-ins can become complex. Errors in these complex constructions are the most common
cause of missing clearances. It is recommended to first create the plane without holes with a
simple region and then make holes in it by a subsequent clear polarity level with the holes; see
0. This is the simplest and most robust. Furthermore, PCB CAM needs to know the location of
the anti-pads; with flashed anti-pads their location is obvious; with cut-ins the anti-pads are
hidden in a complex construction and must be recovered laboriously.

Warning: Care must be taken that rounding errors do not turn a proper contour into a self-
intersecting one, leading to unpredictable results. The Gerber writer must also consider that the
reader unavoidably has rounding errors. Perfectly exact numerical calculation cannot be
assumed. This is especially important for arcs, which are intrinsically fuzzy. Construct contours

Copyright Ucamco NV. 50

defensively. Observe sufficient clearances between the segments of the arcs. It is the
responsibility of the writer to avoid brittle contours that are only marginally valid and become
self-intersecting under normal rounding. Low file coordinate resolution is the most frequent
culprit for rounding problems, see 4.8. We recommend using 6 decimal places in imperial and 5
decimal places in metric.

Warning: An arc can be validly interpreted by any curve within a range, see 4.3. If any of
these curves results in a self-intersecting contour the file is invalid and the result is
unpredictable.

 Note: In the 1960’s and 1970s, the era of vector plotters, the only way to produce a region
was by painting (aka filling or stroking) it with draws. This produces the correct image. However,
the file size explodes. More importantly, painted data cannot be handled properly in PCB CAM
and the painting must be removed laboriously. A file with painted area’s and/or painted pads is
not really suitable for PCB production.

 Note: In previous versions of this document “contour fill” was called “polygon fill”.

4.5.2 Example: a simple contour

Syntax Comments

G36*

X200Y300000D02*

G01X700000D01*

G01Y100000D01*

G01X1100000Y500000D01*

G01X700000Y900000D01*

G01Y700000D01*

G01X200000D01*

G01Y300000D01*

G37*

Start a region

Move the current point to (2, 3)

Line segment to (7, 3)

Line segment to (7, 1)

Line segment to (11, 5)

Line segment to (7, 9)

Line segment to (7, 7)

Line segment to (2, 7)

Line segment to (2, 3)

Create the region by filling the contour

Copyright Ucamco NV. 51

13. Simple contour example: the segments

14. Simple contour example: resulting image

2

4

6

8

10

12

2 4 6 8 10 12

2 4 6 8 10 12

2

4

6

8

10

12

Copyright Ucamco NV. 52

4.5.3 Examples: how to start a single contour

The first D01 starts the contour at the current point, independent of how the current point is set.
We give three examples of similar images; differences with the previous column are highlighted

Example 1 Example 2 Example 3

…

G01*

D11*

…

X300Y500D01*

G36*

X5000Y5000D02*

X6000D01*

Y6000D01*

X5000D01*

Y5000Y5000D01*

G37*

…

…

G01*

D11*

…

X300Y500D01*

X5000Y5000D02*

G36*

X6000D01*

Y6000D01*

X5000D01*

Y5000Y5000D01*

G37*

…

…

G01*

D11*

…

X300Y500D01*

X5000Y5000D01*

G36*

X6000D01*

Y6000D01*

X5000D01*

Y5000Y5000D01*

G37*

…

This sequence creates a
square contour after the

stroked draw X300Y500D01*

Swap D02 and G336. Exactly
the same image.

Replace D02 by D01. The
same contour. The stroked

draw X5000Y5000D01* to

the image.

Copyright Ucamco NV. 53

4.5.4 Examples: Use D02 to start a second contour

Example file: Non- overlapping contours

G04 Non-overlapping contours*

%FSLAX23Y23*%

%MOMM*%

%IPPOS*%

%ADD10C,1.00000*%

%LPD*%

G36*

X0Y5000D02*

Y10000D01*

X10000D01*

Y0D01*

X0D01*

Y5000D01*

X-1000D02*

X-5000Y1000D01*

X-9000Y5000D01*

X-5000Y9000D01*

X-1000Y5000D01*

G37*

M02*

This creates the following image:

15. Use of D02 to start an new non-overlapping contour

Two different contours were created. Each contour is filled individually. The filled area is the
union of the filled areas.

Copyright Ucamco NV. 54

4.5.5 Example fle: Overlapping contours

G04 Overlapping contours*

%FSLAX23Y23*%

%MOMM*%

%IPPOS*%

%ADD10C,1.00000*%

%LPD*%

G36*

X0Y5000D02*

Y10000D01*

X10000D01*

Y0D01*

X0D01*

Y5000D01*

X1000D02*

X5000Y1000D01*

X9000Y5000D01*

X5000Y9000D01*

X1000Y5000D01*

G37*

M02*

This creates the following image:

16. Use of D02 to start an new overlapping contour

Two different contours were created. Each contour is filled individually. The filled area is the
union of the filled areas. As the second contour is completely embedded in the first, the effective
filled area is the one of the first contour.

Copyright Ucamco NV. 55

4.5.6 Example file: Non-overlapping and touching

G04 Non-overlapping and touching*

%FSLAX23Y23*%

%MOMM*%

%IPPOS*%

%ADD10C,1.00000*%

%LPD*%

G36*

X0Y5000D02*

Y10000D01*

X10000D01*

Y0D01*

X0D01*

Y5000D01*

D02*

X-5000Y1000D01*

X-9000Y5000D01*

X-5000Y9000D01*

X0Y5000D01*

G37*

M02*

This creates the following image:

17. Use of D02 to start an new non-overlapping contour

As these are two different contours in the same region touching is allowed.

Copyright Ucamco NV. 56

4.5.7 Example file: Overlapping and touching

G04 Overlapping and touching*

%FSLAX23Y23*%

%MOMM*%

%IPPOS*%

%ADD10C,1.00000*%

%LPD*%

G36*

X0Y5000D02*

Y10000D01*

X10000D01*

Y0D01*

X0D01*

Y5000D01*

D02*

X5000Y1000D01*

X9000Y5000D01*

X5000Y9000D01*

X0Y5000D01*

G37*

M02*

This creates the following image:

18. Use of D02 to start an new overlapping and touching contour

As these are two different contours in the same region touching is allowed.

Copyright Ucamco NV. 57

4.5.8 Using levels to create holes

The recommended way to create holes in regions is by using levels with alternating dark and
clear polarity, as illustrated in the following example. The file has four levels. The first level has
dark polarity and contains the big square region. The second level has clear polarity and
contains a circular disk; the disk is cleared from the image and creates a round hole in the big
square. The third level has dark polarity and contains a small square that is darkened on the
image inside the hole. The fourth level has clear polarity and contains a small disk; the disk
erases parts of the big and the small squares.

The file uses absolute notation with the leading zeros omitted. The units are millimeters.

 Example:

G04 This file illustrates how to use levels to create holes*

%FSLAX27Y27*%

%MOMM*%

G04 First level: big square - dark polarity*

%LPD*%

G36*

X2500000Y2500000D02*

G01X17500000D01*

G01Y17500000D01*

G01X2500000D01*

G01Y2500000D01*

G37*

G04 Second level: big circle - clear polarity*

%LPC*%

G36*

G75*

X5000000Y10000000D02*

G03X5000000Y10000000I5000000J0D01*

G37*

G04 Third level: small square - dark polarity*

%LPD*%

G36*

X7500000Y7500000D02*

G01X12500000D01*

G01Y12500000D01*

G01X7500000D01*

G01Y7500000D01*

G37*

G04 Fourth level: small circle - clear polarity*

%LPC*%

G36*

Copyright Ucamco NV. 58

G75*

X11500000Y10000000D02*

G03X11500000Y10000000I2500000J0D01*

G37*

M02*

Below there are pictures which show the resulting image after adding each level.

19. Resulting image: first level only

Copyright Ucamco NV. 59

20. Resulting image: first and second levels

21. Resulting image: first, second and third levels

Copyright Ucamco NV. 60

22. Resulting image: all four levels

Copyright Ucamco NV. 61

4.5.9 Example: a simple cut-in

Syntax Comments

G75*

G36*

X200Y1000D02*

G01X1200D01*

G01Y200D01*

G01X200D01*

G01Y600D01*

G01X500D01*

G03X500Y600I300J0D01*

G01X200D01*

G01Y1000D01*

G37*

Multi quadrant mode

Initiate a region

Move the current point to (2,10)

Line segment to (12,10)

Line segment to (12, 2)

Line segment to (2, 2)

Line segment to (2, 6)

Line segment to (5, 6), coincident draw

Full counterclockwise circle with radius 300

Line segment to (2, 6), coincident draw

Line segment to (2, 10)

Create the region by filling the contour

Copyright Ucamco NV. 62

23. Simple cut-in: the segments

24. Simple cut-in: the image

2 4 6 8 10 12

2

4

6

8

10

12

2 4 6 8 10 12

2

4

6

8

10

12

Copyright Ucamco NV. 63

4.5.10 Examples: coincident draws

Example 1

G04 ex1: non overlapping*

%FSLAX23Y23*%

%MOMM*%

%IPPOS*%

%ADD10C,1.00000*%

%LPD*%

G36*

X0Y5000D02*

Y10000D01*

X10000D01*

Y0D01*

X0D01*

Y5000D01*

X-1000D01* First coincident draw

X-5000Y1000D01*

X-9000Y5000D01*

X-5000Y9000D01*

X-1000Y5000D01*

X0D01* Second coincident draw

G37*

M02*

This creates the following image:

25. Coincident edges in contours, example 1

Copyright Ucamco NV. 64

Example 2

G04 ex2: overlapping*

%FSLAX23Y23*%

%MOMM*%

%IPPOS*%

%SRX1Y1I0.000J0.000*%

%ADD10C,1.00000*%

%LPD*%

G36*

X0Y5000D02*

Y10000D01*

X10000D01*

Y0D01*

X0D01*

Y5000D01*

X1000D01* First coincident draw

X5000Y1000D01*

X9000Y5000D01*

X5000Y9000D01*

X1000Y5000D01*

X0D01* Second coincident draw

G37*

M02*

This creates the following image:

26. Coincident edges in contours, example 2

Copyright Ucamco NV. 65

4.5.11 Examples: valid and invalid cut-ins

Contours with cut-ins are susceptible to rounding problems: when the vertices move due to the
rounding the contour may become self-intersecting. This may lead to unpredictable results.
Example 2 is a cut-in with valid coincident segments, where draws which are on top of one
another have the same end vertices. When the vertices move due to rounding, the draws will
remain exactly on top of one another, and no self-intersections are created. This is a valid and
robust construction.

G36*

X1220000Y2570000D02*

G01Y2720000D01*

G01X1310000D01*

G01Y2570000D01*

G01X1250000D01*

G01Y2600000D01*

G01X1290000D01*

G01Y2640000D01*

G01X1250000D01*

G01Y2670000D01*

G01X1290000D01*

G01Y2700000D01*

G01X1250000D01*

G01Y2670000D01*

G01Y2640000D01*

G01Y2600000D01*

G01Y2570000D01*

G01X1220000D01*

G37*

Copyright Ucamco NV. 66

This results in the following contour:

27. Cut-in example 2: valid, coincident segments

This creates the following image:

Copyright Ucamco NV. 67

28. Cut-in example 2: resulting image

Copyright Ucamco NV. 68

Example 3 attempts to creates the same image as example 2, but it is invalid due to the use of
invalid partially coinciding segments. The number of draws has been reduced by eliminating
vertices between collinear draws, creating invalid overlapping segments. This construction is
invalid. It is not robust and hard to handle: when the vertices move slightly due to rounding, the
draws that were on top of one another may become intersecting, with unpredictable results.

G36*

X1110000Y2570000D02*

G01Y2600000D01*

G01X1140000D01*

G01Y2640000D01*

G01X1110000D01*

G01Y2670000D01*

G01X1140000D01*

G01Y2700000D01*

G01X1110000D01*

G01Y2570000D01*

G01X1090000D01*

G01Y2720000D01*

G01X1170000D01*

G01Y2570000D01*

G01X1110000D01*

G37*

Copyright Ucamco NV. 69

This results in the following contour:

29. Cut-in example 3: invalid, overlapping segments

Copyright Ucamco NV. 70

4.6 Comment (G04)
The G04 function code is used for human readable comments. It does not affect the image.

The syntax for G04 is as follows.

<Comment>: G(4|04)<Comment string>*

 Example:

G04 This is a comment*

4.7 End-of-file (M02)
The M02 function code indicates the end of the file.

It is mandatory that the last data block in a Gerber file is the M02 function code. Readers are
encouraged to report a missing M02 as this is an indication that the file has been truncated.

No data is allowed after an M02.

The syntax for M02 is as follows:

<End of file marker>: M02*

4.8 FS – Format Specification

The FS parameter specifies the format of the coordinate data. It must be used only once at the
beginning of a file. It must be specified before the first use of coordinate data.

 Note: It is recommended to put the FS parameter at the very first line, maybe after some
general comments.

The FS parameter specifies the following format characteristics:

 Number of integer and decimal places in coordinate data (coordinate format)

 Zero omission (leading or trailing zeroes omitted)

 Absolute or incremental coordinate notation

 Warning: Explicit decimal points in coordinates are not allowed.

4.8.1 Coordinate Format

The coordinate format specifies the number of integer and decimal places in the coordinate
data. For example, the “23” format specifies 2 integer and 3 decimal places. A maximum of 7
integer and 7 decimal places can be specified (nnnnnnn.nnnnnnn). The same format must be
defined for X and Y. Signs are allowed. The ‘+’ sign is optional.

 Note: In previous versions of the specification the implementation limit on integer and
decimal places was 6. However, some applications started to generate 7 decimal places
because they needed the accuracy. We adapted the specification to technology requirements
and raised the limit to 7. However, there are probably still a number of Gerber readers in use
that can only handle 6. It is therefore recommended to use 7 decimal places only if the extra
accuracy is needed.

 Warning: We strongly recommend using 6 decimal places in imperial and 5 decimal places
in metric. A lower number of decimal places can lose vital precision. The option to use a lower

Copyright Ucamco NV. 71

number of decimal places is a simplistic compression method introduced in the 1950’s, when
saving a few bytes was of paramount importance and computers were too feeble for proper
compression algorithms. Nowadays the few bytes saved are irrelevant. Modern compression
methods far outperform this simplistic method, without loss of accuracy. If the extra digits are
not significant, they will be compressed away; if they are significant they should not be blindly
removed. The benefits of a small number of decimal digits are long gone. The disadvantages
remain. It is a source of endless confusion.

The resolution of a Gerber file is the distance expressed by the least significant digit of
coordinate data. Thus the resolution is the size of grid steps of the coordinates.

The unit in which the coordinates are expressed is set by the %MO parameter. See 4.9.

4.8.2 Zero Omission

Zero omission allows reducing the size of data by omitting either leading or trailing zeroes from
the coordinate values.

With leading zero omission some or all leading zeroes can be omitted but all trailing zeroes are
required. To interpret the coordinate string, it is first padded with zeroes in front until its length
fits the coordinate format. For example, with the “23” coordinate format, “015” is padded to
“00015” and therefore represents 0.015.

With trailing zero omission some or all trailing zeroes can be omitted but all leading zeroes are
required. To interpret the coordinate string, it is first padded with zeroes at the back until its
length fits the coordinate format. For example, with the “23” coordinate format, “15” is padded to
“15000” and therefore represents 15.000.

Leading zero omission is easier to read.

If the coordinate data in the file does not omit zeroes it is conventional to specify leading zero
omission.

4.8.3 Absolute or Incremental Notation

Coordinate values can be expressed either as absolute coordinates (absolute notation) or as
incremental distances from a previous coordinate position (incremental notation).

 Warning: It is recommended to use absolute notation only. With incremental notation
rounding errors can accumulate, losing vital precision. With incremental notation Gerber files
are no longer human readable, losing a big advantage. Incremental notation is a simplistic
compression technology introduced in the 1950’s, when saving a few bytes was of paramount
importance and computers were too feeble for proper compression algorithms. Nowadays the
few bytes saved are irrelevant. Modern compression methods far outperform this simplistic
method, without any loss of accuracy. If the file size is important for you use a strong
compression algorithm rather than sacrificing precision and clarity. The advantage of
incremental notation is long gone. Its disadvantages remain. Incremental notation is a source of
endless confusion. Always use absolute notation.

Copyright Ucamco NV. 72

4.8.4 Data Block Format

The syntax for the FS parameter is:

<FS parameter>: FS(L|T)(A|I)X<Format>Y<Format>*

Syntax Comments

FS FS for Format Specification

L|T Specifies zero omission mode:

L – omit leading zeroes

T – omit trailing zeroes

A|I Specifies coordinate values notation:

A – absolute notation

I – incremental notation

X<Format>Y<Format> Specifies the format of X and Y coordinate data. The format of X
and Y coordinates must be the same!

<Format> must be expressed as a number NM where

N - number of integer positions in coordinate data

(0 ≤ N ≤ 7)

M - number of decimal positions in coordinate data

(0 ≤ M ≤ 7)

4.8.5 Examples

Syntax Comments

%FSLAX25Y25*% Coordinate data has leading zeros omitted. Coordinates are
expressed using absolute notation with 2 integer and 5 decimal
positions for both axes.

4.9 MO – Mode
The MO parameter sets the units used for coordinate data and for sizes parameters or modifiers
indicating sizes or coordinates. The units can be either inches or millimeters. This parameter
must be used only once, at the beginning of the file.

 Note: the FS parameter sets the format (i.e. number of integer and decimal positions) of
the coordinate data.

4.9.1 Data Block Format

The syntax for the MO parameter is:

Copyright Ucamco NV. 73

<MO parameter>: MO(IN|MM)*

Syntax Comments

MO MO for Mode

IN|MM Units of the dimension data:

IN – inches

MM – millimeters

4.9.2 Examples

Syntax Comments

%MOIN*% Dimensions are expressed in inches

%MOMM*% Dimensions are expressed in millimeters

4.10 IP – Image Polarity
The IP parameter sets the positive or negative polarity for the entire image. It can only be used
once, at the beginning of the file.

4.10.1 Positive image polarity

Under positive image polarity, the image is generated as specified elsewhere in this document.
(In other words, the image generation has been assuming positive image polarity.)

4.10.2 Negative image polarity

Under negative image polarity, image generation is different. Its purpose is to create a negative
image, clear areas in a dark background. The entire image plane in the background is initially
dark instead of clear. The effect of dark and clear polarity is toggled. The entire image is simply
reversed, dark becomes white and vice versa.

Note that the first graphics object generated must have dark polarity, and therefore clears the
dark background. It is not allowed to have a clear polarity first graphics object. Consequently,
the first graphics object always clears the background.

 Note: Plane layers in PCB’s are typically solid copper areas with holes in it, called anti-
pads and thermals. For historic reasons, such layers are sometimes transferred as negative
images: the copper area is clear and the anti-pads are dark. %IPNEG is a convenient way to
create such images. It also clearly specifies the layer is transferred in negative. However, today
there is no need to transfer layers in negative. Plane layers are better described positive, using
regions (G36/G37) with clear polarity levels (%LPC) to make holes.)

Copyright Ucamco NV. 74

4.10.3 Data Block Format

The syntax for the IP parameter is:

<IP parameter>: IP(POS|NEG)*

Syntax Comments

IP IP for Image Polarity

POS Image has positive polarity

NEG Image has negative polarity

4.10.4 Examples

Syntax Comments

%IPPOS*% Image has positive polarity

%IPNEG*% Image has negative polarity

4.11 AD - Aperture Definition
The AD parameter assigns a D-code number, also called aperture number, to an aperture
(shape) and sets the aperture as current aperture.

The AD parameter must precede the first use of the assigned aperture. It is recommended to
put all AD parameters in the beginning of the file.

Once a D-code number is assigned to an aperture it cannot be re-assigned.

An aperture has a flash point. When an aperture is flashed at a given coordinate data, the
aperture is positioned in such a way that the flash point coincided with the coordinate data.

There are two kinds of apertures: standard apertures and special apertures.

The Gerber file format contains a number of standard apertures. The AD parameter assigns a
D-code to a standard aperture and defines it parameters, typically sizes. The flash point of a
standard aperture is the geometric center of its shape.

Other apertures, called special apertures or macro apertures can be defined with the AM
(Aperture Macro) parameter. These aperture macros are identified by their name. See section
4.12. The AD parameter is also used to assign a D-code to a special aperture and define its
parameters. The flash point of a special aperture is the origin of the coordinates used in the AM
parameter.

 Note: Zero size apertures are valid. An object created with a zero size aperture is a valid
object, but it does not affect the image. It can be used to define Metadata, e.g. an outline or a
reference point.

Copyright Ucamco NV. 75

4.11.1 Syntax Rules

The AD parameter starts with ‘AD’, followed by ‘D’ and D-code number, then the aperture type
and then optionally modifiers.

The allowed range of D-code is from 10 up to 2147483647 (max int32). The D-codes 1 to 9 are
reserved and cannot be used for apertures.

 Warning: In older versions of the specification the maximum D-code was 999. Gerber
readers may be severely limited in the maximum D code they support. It is therefore
recommended to use low D-codes when possible.

 Example:

%ADD10C,.025*%

 Note: For readability it is recommended to enclose each AD parameter into a separate pair
of '%' characters.

4.11.2 Data Block Format

The syntax for the AD parameter is the following:

<AD parameter>: ADD<D-code number><Aperture type>[,<Modifiers set>]*

<Modifiers set>: <Modifier>{X<Modifier>}

Syntax Comments

ADD AD for Aperture Definition and D for D-code

<D-code number> The D-code number being defined (≥10)

<Aperture type>[,<Modifiers set>] The aperture type optionally followed by modifiers

The <Aperture type> can be in one of two available formats:

 For a standard aperture: one of the standard aperture codes (C,R,O or P)

 For a special aperture: an aperture macro name previously defined by an AM
parameter

The required number of modifiers in <Modifiers set> depends on the <Aperture type>. Modifiers
are separated by the ‘X’ character. All sizes must be ≥0. Units follow the MO parameter. The
numbers follow standard notation, optionally including a decimal point; they do not follow the FS
parameter.

Standard apertures may be solid or open. Open means there is a hole in the aperture. Holes are
not part of the aperture. They have no effect on the image. Note that holes do not clear the
objects under them. Objects under a hole remain and are visible. Holes are therefore called
transparent. This is not the same as clear level polarity where all objects underneath are cleared.

The syntax of a hole is common for all standard apertures:

<Hole>: <X-axis hole size >[X<Y-axis hole size>]

Copyright Ucamco NV. 76

If only the <X-axis hole size> modifier is specified the hole is round, and the modifier specifies
the diameter. If both X and Y is specified the hole is rectangular and the modifiers specify the X
and Y size. If both parameters are omitted the aperture is solid.

The hole must fit within the aperture. It is centered on the aperture.

Copyright Ucamco NV. 77

4.11.3 Standard Apertures

4.11.3.1 Circle

The syntax of the circle standard aperture:

C,<Diameter>[X<Hole>]

Syntax Comments

C Indicates that this is a circle aperture

<Diameter> Circle diameter, ≥0

<Hole> Optional hole

If no hole is specified the aperture is solid

 Examples:

These statements define the apertures below

%ADD10C,0.5*%

%ADD10C,0.5X0.25*%

%ADD10C,0.5X0.29X0.29*%

30. Circles with different holes

Copyright Ucamco NV. 78

4.11.3.2 Rectangle

The syntax of the rectangle or square standard aperture:

R,<X size>X<Y size>[X<Hole>]

Syntax Comments

R Indicates that this is a rectangle or square aperture

<X size>

<Y size>

X and Y sizes of the rectangle sides

If the <X size> equals the <Y size>, the aperture is square

<Hole> Optional hole

If no hole is specified the aperture is solid

 Examples:

These statements define the apertures below

%ADD22R,0.044X0.025*%

%ADD22R,0.044X0.025X0.019*%

%ADD22R,0.044X0.025X0.024X0.013*%

31. Rectangles with different holes

Copyright Ucamco NV. 79

4.11.3.3 Obround

Obround (oval) is a shape consisting of two semicircles connected by parallel lines tangent to
their endpoints. The syntax of the obround standard aperture:

O,<X size>X<Y size>[X<Hole>]

Syntax Comments

O Indicates that this is an obround aperture

<X size>

<Y size>

X and Y sizes of the obround sides

The smallest side is terminated by half a circle. If the <X size> is
larger than <Y size>, the shape is horizontal. If the <X size> is
smaller than <Y size>, the shape is vertical. If the <X size> is equal to
<Y size>, the shape is a circle

<Hole> Optional hole. If no hole is specified, the aperture is solid

 Example:

These statements define the apertures below

%ADD22O,0.046X0.026*%

%ADD22O,0.046X0.026X0.019*%

%ADD22O,0.026X0.046X0.013X0.022*%

32. Obrounds with different holes

Copyright Ucamco NV. 80

4.11.3.4 Regular polygon

The syntax of the polygon standard aperture:

P,<Outer diameter>X<Number of vertices>[X<Degrees of rotation>[X<Hole>]]

Syntax Comments

P Indicates that this is a polygon aperture

<Outer diameter> Diameter of the circumscribed circle, i.e. the circle through the
polygon vertices

<Number of vertices> Number of polygon vertices, ranging from 3 to 12

<Degrees of rotation> Specifies rotation of the aperture around its center.

Without rotation one vertex is on the positive X-axis through
the center. Rotation angle is expressed in decimal degrees;
positive value for counterclockwise rotation, negative value for
clockwise rotation.

<Hole> Optional hole

The hole modifiers can be specified only after a rotation angle;
set an angle of zero if no rotation is required

If no hole is specified the aperture is solid

 Note: The orientation of the hole is not affected by the rotation angle modifier.

Copyright Ucamco NV. 81

 Examples:

These statements define the apertures below

%ADD17P,.040X6*%

%ADD17P,.040X6X0.0X0.019*%

%ADD17P,.040X6X15.0X0.023 X0.013*%

33. Polygons with different holes

Outer diameter

Outer diameter

Outer diameter

Copyright Ucamco NV. 82

4.11.4 Examples

Syntax Comments

%ADD10C,.025*% D-code 10 is a solid circle with diameter 0.025

%ADD22R,.050X.050X.027*%
D-code 22 is a square with sides of 0.05 and with a
0.027 diameter round hole

%ADD57O,.030X.040X.015*%
D-code 57 is an obround with sizes 0.03 x 0.04
with 0.015 diameter round hole

%ADD30P,.016X6*%
D-code 30 is a solid polygon with 0.016 outer
diameter and 6 vertices

%ADD15CIRC*%
D-code 15 is a special aperture described by
aperture macro CIRC defined previously by an
aperture macro (AM) parameter

4.12 AM - Aperture Macro
The AM parameter defines special apertures consisting of building blocks called primitives.

A special aperture macros defined by the AM parameter can be referenced from AD parameter
definitions in the same way as the standard apertures. (One could view the standard apertures
as pre-defined macro apertures.) A special aperture must be defined before a D-code number
can be assigned to it.

Special apertures offer two advantages compared to standard apertures:

 Multiple shapes called primitives can be combined in a single aperture to create
non-standard aperture shapes

 Aperture macro modifiers can be variable; the actual values can be defined as:

 Values provided by an AD parameter referencing the aperture macro

 Arithmetic expressions calculating the actual value based on other variables

The AM parameter can be used multiple times in a file. It must be put at the beginning of a file
or level.

4.12.1 Data Block Format

The syntax for the AM parameter is:

<AM parameter>: AM<Aperture macro name>*<Macro content>

<Macro content>: {{<Variable definition>*}{<Primitive>*}}

<Variable definition>: $K=<Arithmetic expression>

<Primitive>: <Primitive code>,<Modifier>{,<Modifier>}|<Comment>

<Modifier>: $M|< Arithmetic expression>

<Comment>: 0 <Text>

Syntax Comments

AM AM for Aperture Macro

Copyright Ucamco NV. 83

<Aperture macro name> Name of the aperture macro. See 3.2 for the syntax rules.

<Macro content> Macro content describes primitives included into the aperture
macro. Can also contain definitions of new variables.

<Variable definition> Definition of a variable.

$K=<Arithmetic
expression>

Definition of the variable $K. An arithmetic expression may use
arithmetic operators (described later), constant numbers and
also variables $X where the definition of $X precedes $K.

<Primitive> Individual primitive that includes primitive code and modifiers
which are primitive parameters (e.g. diameter for a circle). The
modifiers depend on the primitive. All primitives are described
later in this document.

<Primitive code> A code specifying the primitive (e.g. polygon).

<Modifier> Modifier can be a decimal number (e.g. 0.050), a variable (e.g.
$1) or an arithmetic expression based on numbers and
variables. The actual value for a variable is either provided by
an AD parameter or defined within the AM by some previous
<Variable definition>.

<Comment> Comment does not affect the image.

<Text> Single-line text string

Modifiers can be classified as in the following table:

Modifier type Comments

Exposure modifier The exposure modifier that can have the following values:

0 means exposure is ‘off’

1 means exposure is ‘on’

Rotation modifier Modifier that specifies the rotation angle: positive value means
counterclockwise rotation, negative - clockwise.

Geometry modifier Modifier that specifies e.g. a diameter, X and Y positions,
width, etc.

Coordinates and sizes are expressed in the unit set by the MO parameter.

Exposure is set ‘on’ or ‘off’ by the exposure modifier. Exposure ‘on’ creates a solid part of the
macro aperture. Exposure ‘off’ clears or erases the underlying solid part to create a hole in it.
Note that the clearing action only affects the macro aperture definition itself and is not passed
through to affect the image that the macro aperture is used on. Exposure off only creates a hole
in the macro aperture. Holes are not part of the aperture. They have no effect on the image. Note
that holes do not clear the objects under them. Objects under a hole remain and are visible.
Holes are therefore called transparent. This is not the same as clear polarity where all objects
underneath are cleared.

The rotation angle is expressed in degrees, by a decimal number; a positive value means
counterclockwise rotation, a negative value means clockwise rotation. The pivot of the rotation
of a primitive is always the origin, i.e. the point (0,0). To rotate a macro composed of several

Copyright Ucamco NV. 84

primitives it is then sufficient to rotate all primitives with the same angle. Note that for the
polygon, thermal and moiré rotation is only allowed if their center is placed on the origin.

4.12.2 Primitives

4.12.2.1 Comment, primitive code 0

The comment primitive has no image meaning. It is used to include human-readable comments
into the AM parameter. The comment primitive starts with the ‘0’ code followed by a space and
then a single-line text string. The text string follows the syntax rules for comments as described
in section 3.1.

 Example:

%AMRECTROUNDCORNERS*

0 Rectangle with rounded corners. *

0 Offsets $4 and $5 are interpreted as the *

0 offset of the flash origin from the pad center. *

0 First create horizontal rectangle. *

21,1,$1,$2-$3-$3,0-$4,0-$5,0*

0 From now on, use width and height half-sizes. *

$9=$1/2*

$8=$2/2*

0 Add top and bottom rectangles. *

22,1,$1-$3-$3,$3,0-$9+$3-$4,$8-$3-$5,0*

22,1,$1-$3-$3,$3,0-$9+$3-$4,0-$8-$5,0*

0 Add circles at the corners. *

1,1,$3+$3,0-$4+$9-$3,0-$5+$8-$3*

1,1,$3+$3,0-$4-$9+$3,0-$5+$8-$3*

1,1,$3+$3,0-$4-$9+$3,0-$5-$8+$3*

1,1,$3+$3,0-$4+$9-$3,0-$5-$8+$3*%

In the example above all the lines starting with 0 are comments and do not affect the image.

Copyright Ucamco NV. 85

4.12.2.2 Circle, primitive code 1

A circle primitive is defined by its center point and diameter.

Modifier number Description

1 Exposure off/on (0/1)

2 Diameter

3 X coordinate of center position

4 Y coordinate of center position

34. Circle primitive

 Example:

%AMCIRCLE*

1,1,1.5,0,0*%

3, 4

 2

Copyright Ucamco NV. 86

4.12.2.3 Vector Line, primitive code 2 or 20.

A vector line is a rectangle defined by its line width, start and end points. The line ends are
rectangular.

Modifier number Description

1 Exposure off/on (0/1)

2 Line width

3 X coordinate of start point

4 Y coordinate of start point

5 X coordinate of end point

6 Y coordinate of end point

7 Rotation angle around the origin (rotation is not around the center of
the object)

35. Line (vector) primitive

 Example:

%AMLINE*20,1,0.9,0,0.45,12,0.45,0*%

3, 4

 2

 5, 6

Copyright Ucamco NV. 87

4.12.2.4 Center Line, primitive code 21

A center line primitive is a rectangle defined by its width, height, and center point..

Modifier number Description

1 Exposure off/on (0/1))

2 Rectangle width

3 Rectangle height

4 X coordinate of center point

5 Y coordinate of center point

6 Rotation angle around the origin (rotation is not around the center of
the object)

36. Line (center) primitive

 Example:

%AMRECTANGLE*21,1,6.8,1.2,3.4,0.6,0*%

2

 4, 5 3

Copyright Ucamco NV. 88

4.12.2.5 Lower Left Line, primitive code 22

A lower left line primitive is a rectangle defined by its width, height, and the lower left point.

Modifier number Description

1 Exposure off/on (0/1))

2 Rectangle width

3 Rectangle height

4 X coordinate of lower left point

5 Y coordinate of lower left point

6 Rotation angle around the origin (rotation is not around the center of
the object)

37. Line (lower left) primitive

 Example:

%AMLINE2*22,1,6.8,1.2,0,0,0*%

2

4, 5 3

Copyright Ucamco NV. 89

4.12.2.6 Outline, primitive code 4

An outline primitive is an area enclosed by an n-points polygon, defined by its start point and n
subsequent points. The outline must be closed, i.e. the last point must be equal to the start
point. There must be at least one subsequent point otherwise the outline cannot be closed. Self-
intersecting outlines are not allowed.

 Warning: Make no mistake: n is the number of subsequent points. Consequently, n is
equal to the number of vertices of the outline but one less than the number of coordinate pairs.

Modifier number Description

1 Exposure off/on (0/1)

2 The number of subsequent points n (n≥1)

3, 4 X and Y coordinates of the start point

5, 6 X and Y coordinates of subsequent point number 1

... X and Y coordinates of further subsequent points

3+2n, 4+2n X and Y coordinates of subsequent point number n. Must be equal to
coordinates of start point

5+2n Rotation angle around the origin (rotation is not around the center of
the object)

38. Outline primitive

The X and Y coordinates are not modal: both the X and the Y coordinate must be specified for
all points.

3, 4

5, 6
 7, 8

Copyright Ucamco NV. 90

 Note: Older versions of the specification defined the maximum of 50 for the number of
subsequent points n. This has proven to be too restrictive, and the limit is now increased to
4000.

 Example:

%AMOUTLINE*

4,1,4,

0.1,0.1,

0.5,0.1,

0.5,0.5,

0.1,0.5,

0.1,0.1,

0*%

Copyright Ucamco NV. 91

4.12.2.8 Polygon, primitive code 5

A polygon primitive is a regular polygon defined by the number of vertices n, the center point
and the diameter of the circumscribed circle.

Modifier number Description

1 Exposure off/on (0/1)

2 Number of vertices n, 3 ≤ n ≤ 12

3 X coordinate of center point

4 Y coordinate of center point

5 Diameter of the circumscribed circle

6 Rotation angle around the origin. Rotation is only allowed if the center
point is on the origin. When the rotation angle is zero, the first vertex
is on the positive X-axis through the center point

39. Polygon primitive

 Example:

%AMPOLYGON*

5,1,8,0,0,8,0*%

3, 4

5

First
vertex

Copyright Ucamco NV. 92

4.12.2.9 Moiré, primitive code 6

The moiré primitive is a cross hair centered on concentric rings (annuli). Exposure is always on.

Modifier number Description

1 X coordinate of center point

2 Y coordinate of center point

3 Outer diameter of outer concentric ring

4 Ring thickness

5 Gap between rings

6 Maximum number of rings

7 Cross hair thickness

8 Cross hair length

9 Rotation angle around the origin. Rotation is only allowed if the center
point is on the origin.

40. Moiré primitive

The outer diameter of the outer ring is specified by modifier 3. The ring has the thickness
defined by modifier 4. Moving further towards the center there is a gap defined by modifier 5,
and then the second ring etc. The maximum number of rings is defined by modifier 6. The

5

1, 2

 8

3

7

4

Copyright Ucamco NV. 93

number of rings can be less if the center is reached. If there is not enough space for the last ring
it becomes a full disc centered on the origin.

 Example:

%AMMOIRE*

6,0,0,5,0.5,0.5,2,0.1,6,0*%

Copyright Ucamco NV. 94

4.12.2.10 Thermal, primitive code 7

The thermal primitive is a ring (annulus) interrupted by four gaps. Exposure is always on.

Modifier number Description

1 X coordinate of center point

2 Y coordinate of center point

3 Outer diameter

4 Inner diameter

5 Gap thickness

6 Rotation angle around the origin. Rotation is only allowed if the center
point is on the origin. If the rotation angle is zero the gaps are on the
X and Y axes through the center.

41. Thermal primitive

The following constraints apply:

 Inner diameter ≥ 0

 Outer diameter > Inner diameter

 Gap thickness > 0

 Gap thickness*√2 < Outer diameter (With a larger gap the whole aperture disappears)

Note: Note that if the gap thickness*√2 ≥ Inner diameter the inner circle disappears. This is
not invalid.

 4 3

Copyright Ucamco NV. 95

4.12.3 Parameter Contents

An aperture macro definition must contain an aperture macro name that later can be
referenced from an AD parameter. An aperture macro definition also contains one or more of
the aperture primitives described above. Each primitive (besides the special comment
primitive) includes modifiers setting exposure, position, size, rotation etc. Primitive modifiers
can use variables. Variables are indicated by a valid name beginning with a ‘$’. The values for
such variables must either be provided by an AD parameter or calculated using an arithmetic
expression over other variables.

4.12.4 Syntax Rules

Each AM definition must be enclosed into a separate pair of ‘%’ characters.

 Warning: An AM definition cannot be grouped. This is different from the other parameters.

As an AM definition can be quite long, it can contain line separators to enhance readability. Line
separators are ignored within an AM definition.

An AM parameter can contain the following types of data blocks:

 AM declaration

 Primitive with modifiers

 Variable definition by an arithmetic expression

 Comment (special comment primitive)

Each data block must end with the end-of-block ‘*’ character. Within a primitive data block
each modifier must be separated by a comma. A modifier can be one of the following:

 A decimal number, such as 0, 1, 2, or 9.05

 A variable, such as $1 or $VAR

 An arithmetic expression including numbers and other variables.

4.12.4.1 Variable values from an AD Parameter

An AM parameter can use variables, whose actual values can be provided by an AD
parameter. Such variables are identified by ‘$n’ where n indicates the serial number of the
variable value in the list provided by an AD parameter. Thus $1 means the first value in the
list, $2 the second, and so on.

 Example:

%AMDONUTVAR*1,1,$1,$2,$3*1,0,$4,$2,$3*%

Here the variables $1, $2, $3 and $4 are used as modifier values. The corresponding AD
parameter should look like:

%ADD34DONUTVAR,0.100X0X0X0.080*%

In this case the value of variable $1 becomes 0.100, $2 and $3 become 0 and $4 becomes
0.080. These values are used as values of corresponding modifiers in the DONUTVAR macro.

Copyright Ucamco NV. 96

4.12.4.2 Arithmetic expressions

A modifier value can also be defined as an arithmetic expression that includes basic
arithmetic operators such as ‘add’ or ‘multiply’, constant numbers (with or without decimal
point) and other variables. The following arithmetic operators can be used:

Operator Function

+ Add

- Subtract

x (lowercase) Multiply

/ Divide

Arithmetic operators

The result of the divide operation is decimal; it is not rounded or truncated to an integer.

The standard arithmetic precedence rules apply. Below operators are listed in order from lowest
to highest priority. The brackets ‘(‘ and ‘)’ can be used to overrule the standard precedence
rules.

 Add and subtract: ‘+’ and ‘-‘

 Multiply and divide: ‘x’ and ‘/’

 Brackets: ‘(’ and ‘)’

There is no unary minus operator. Negative values can be expressed by subtracting from zero,
e.g. ‘0-$1’.

 Example:

%AMRECT*

21,1,$1,$2-$3-$3,0-$4,0-$5,0*%

Corresponding AD parameter could look like:

%ADD146RECT,0.0807087X0.1023622X0.0118110X0.5000000X0.3000000*%

4.12.4.3 Definition of a new variable

The AM parameter allows defining new variables based on previously defined variables. A
new variable is defined as an arithmetic expression that follows the same rules as described
in previous section. A variable definition also includes ‘=’ sign with the meaning ‘assign’.

For example, to define variable $4 as a variable $1 multiplied by 0.75 the following arithmetic
expression can be used:

$4=$1x0.75

Copyright Ucamco NV. 97

 Example:

%AMDONUTCAL*

1,1,$1,$2,$3*

$4=$1x0.75*

1,0,$4,$2,$3*%

Local variables with names as. $XSIZE, $YSIZE, are allowed. Variable names are subject to
the syntax rules in section 3.2 and must begin with a “$”..

 Example:

%AMREC2*$XSIZE=$1*$YSIZE=$2*21,1,$XSIZE,$YSIZE,0,0,0*%

Here local variables $XSIZE and $YSIZE are defined and initialized to $1 and $2 values.

The values for variables in an AM parameter are determined as follows:

 All variables used in AM parameter are initialized to 0

 If an AD parameter that references the aperture macro contains N modifiers then
variables $1,$2, ..., $N get the values of these modifiers

 The remaining variables get their values from definitions in the AM parameter; if
some variable remains undefined then its value is still 0

 The values of variables $1, $2, …, $N can also be modified by definitions in AM,
i.e. the values originating from an AD parameter can be redefined

 Example:

%AMDONUTCAL*1,1,$1,$2,$3*$4=$1x0.75*1,0,$4,$2,$3*%

The variables $1, $2, $3, $4 are initially set to 0.

If the corresponding AD parameter contains only 2 modifiers then the value of $3 will remain 0.

If the corresponding AD parameter contains 4 modifiers. e.g.

%ADD35DONUTCAL,0.020X0X0X0.03*%

the variable values are calculated as follows: the AD parameter modifier values are first
assigned so variable values $1 = 0.02, $2 = 0, $3 = 0, $4 = 0.03. The value of $4 is modified by
definition in AM parameter so it becomes $4 = 0.02 x 0.75 = 0.015.

The variable definitions and primitives are handled from the left to the right in the order of AM
parameter. This means a variable can be set to a value, used in a primitive, re-set to a new
value, used in a next primitive etc.

Copyright Ucamco NV. 98

 Example:

%AMTARGET*1,1,$1,0,0*$1=$1x0.8*1,0,$1,0,0*$1=$1x0.8*1,1,$1,0,0*$1=$1x0.8*1

,0,$1,0,0*$1=$1x0.8*1,1,$1,0,0*$1=$1x0.8*1,0,$1,0,0*%

%ADD37TARGET,0.020*%

Here the value of $1 is changed by the expression ‘$1=$1x0.8’ after each primitive so the value
changes like the following: 0.020, 0.016, 0.0128, 0.01024, 0.008192, 0.0065536.

 Example:

%AMREC1*$2=$1*$1=$2*21,1,$1,$2,0,0,0*%

%AMREC2*$1=$2*$2=$1*21,1,$1,$2,0,0,0*%

%ADD51REC1,0.02,0.01*%

%ADD52REC2,0.02,0.01*%

Aperture 51 is the square with side 0.02 and aperture 52 is the square with side 0.01, because
the variable values in AM parameters are calculated as follows:

For the aperture 51 initially $1 is 0.02 and $2 is 0.01. After operation ‘$2=$1’ the variable values
become $2 = 0.02 and $1 = 0.02. After the next operation ‘$1=$2’ they remain $2 = 0.02 and $1
= 0.02 because previous operation changed $2 to 0.02. The resulting primitive has 0.02 width
and height.

For the aperture 52 initially $1 is 0.02 and $2 is 0.01 (the same as for aperture 51). After
operation ‘$1=$2’ the variable values become $1 = 0.01 and $2 = 0.01. After the next operation
‘$2=$1’ they remain $1 = 0.01 and $2 = 0.01 because previous operation changed $1 to 0.01.
The resulting primitive has 0.01 width and height.

Below are some more examples of using arithmetic expressions in AM parameter. Note that
some of these examples probably do not represent a reasonable aperture macro – they just
illustrate the syntax that can be used for defining new variables and modifier values.

Copyright Ucamco NV. 99

 Example:

%AMTEST*

1,1,$1,$2,$3*

$4=$1x0.75*

$5=($2+100)x1.75*

1,0,$4,$5,$3*%

%AMTEST*

$4=$1x0.75*

$5=100+$3*

1,1,$1,$2,$3*

1,0,$4,$2,$5*

$6=$4x0.5*

1,0,$6,$2,$5*%

%AMRECTROUNDCORNERS*

21,1,$1,$2-$3-$3,0-$4,0-$5,0*

$9=$1/2*

$8=$2/2*

22,1,$1-$3-$3,$3,0-$9+$3-$4,$8-$3-$5,0*

22,1,$1-$3-$3,$3,0-$9+$3-$4,0-$8-$5,0*

1,1,$3+$3,0-$4+$9-$3,0-$5+$8-$3*

1,1,$3+$3,0-$4-$9+$3,0-$5+$8-$3*

1,1,$3+$3,0-$4-$9+$3,0-$5-$8+$3*

1,1,$3+$3,0-$4+$9-$3,0-$5-$8+$3*%

Copyright Ucamco NV. 100

4.12.5 Examples

4.12.5.1 Fixed Modifier Values

The following AM parameter defines an aperture macro named ‘DONUTFIX’ consisting of two
concentric circles with fixed diameter sizes:

%AMDONUTFIX*1,1,0.100,0,0*1,0,0.080,0,0*%

Syntax Comments

AMDONUTFIX Aperture macro name is ‘DONUTFIX’

1,1,0.100,0,0 1 – Circle

1 – Exposure on

0.100 – Diameter

0 – X coordinate of the center

0 – Y coordinate of the center

1,0,0.080,0,0 1 – Circle

0 – Exposure off

0.080 – Diameter

0 – X coordinate of the center

0 – Y coordinate of the center

The AD parameter using this aperture macro can look like the following:

%ADD33DONUTFIX*%

4.12.5.2 Variable Modifier Values

The following AM parameter defines an aperture macro named ‘DONUTVAR’ consisting of two
concentric circles with variable diameter sizes:

%AMDONUTVAR*1,1,$1,$2,$3*1,0,$4,$2,$3*%

Syntax Comments

AMDONUTVAR Aperture macro name is ‘DONUTVAR’

Copyright Ucamco NV. 101

1,1,$1,$2,$3 1 – Circle

1 – Exposure on

$1 – Diameter is provided by AD parameter

$2 – X coordinate of the center is provided by AD parameter

$3 – Y coordinate of the center is provided by AD parameter

1,0,$4,$2,$3 1 – Circle

0 – Exposure off

$4 – Diameter is provided by AD parameter

$2 – X coordinate of the center is provided by AD parameter (same
as in first circle)

$3 – Y coordinate of the center is provided by AD parameter (same
as in first circle)

The AD parameter using this aperture macro can look like the following:

%ADD34DONUTVAR,0.100X0X0X0.080*%

In this case the variable modifiers get the following values: $1 = 0.100, $2 = 0, $3 = 0, $4 =
0.080.

4.12.5.3 Definition of a New Variable

The following AM parameter defines an aperture macro named ‘DONUTCAL’ consisting of two
concentric circles with the diameter of the second circle defined as a function of the diameter of
the first:

%AMDONUTCAL*1,1,$1,$2,$3*$4=$1x0.75*1,0,$4,$2,$3*%

Syntax Comments

AMDONUTCAL Aperture macro name is ‘DONUTCAL’

1,1,$1,$2,$3 1 – Circle

1 – Exposure on

$1 – Diameter is provided by AD parameter

$2 – X coordinate of the center is provided by AD parameter

$3 – Y coordinate of the center is provided by AD parameter

$4=$1x0.75 Defines variable $4 to be used as the diameter of the inner circle;
the diameter of this circle is 0.75 times the diameter of the outer
circle

1,0,$4,$2,$3 1 – Circle

0 – Exposure off

$4 – Diameter is calculated using the previous definition of this
variable

$2 – X coordinate of the center is provided by AD parameter (same
as in first circle)

$3 – Y coordinate of the center is provided by AD parameter (same
as in first circle)

Copyright Ucamco NV. 102

The AD parameter using this aperture macro can look like the following:

%ADD35DONUTCAL,0.020X0X0*%

This defines a donut with outer circle diameter equal to 0.02 and inner circle diameter equal to
0.015.

4.12.5.4 Rotation Modifier

The following AM parameter defines an aperture macro named ‘TRIANGLE_30’. The macro is a
triangle rotated 30 degrees around the origin:

%AMTRIANGLE_30*4,1,3,1,-1,1,1,2,1,1,-1,30*%

Syntax Comments

AMTRIANGLE_30 Aperture macro name is ‘TRIANGLE_30’

4,1,3 4 – Outline

1 – Exposure on

3 – The outline has three subsequent points

1,-1 1 – X coordinate of the start point

-1 – Y coordinate of the start point

1,1,2,1,1,-1 Coordinates (X, Y) of the subsequent points: (1,1), (2,1), (1,-1)

30 Rotation angle is 30 degrees counterclockwise

42. Rotated triangle

The AD parameter using this aperture macro can look like the following:

%ADD33AMTRIANGLE_30*%

(0, 0)

Rotation center

Copyright Ucamco NV. 103

4.13 SR – Step and Repeat
The SR parameter sets the number of repeats and step distance along the X and Y axis in the
graphics state. When the number of repeats in either X or Y is greater than 1 step & repeat
mode is enabled; it is cleared when both numbers are set to 1.

In step & repeat mode the graphics objects generated in the stream of date are collected in a
data set called a block. When another SR parameter or the end of the file is encountered the
block is stepped and repeated (copied) in the image plane, first in the Y direction and then in the
X direction. Each copy of the block contains identical graphics objects, put in another location.
The number of the steps and the step distance is given by the graphics state.

 Example:

%SRX3Y2I5.0J4.0*%

43. Step and Repeat

The block that is copied consists of the graphics objects generated by the Gerber source data in
the SR section. It is not that the Gerber source that is copied and processed several times. The
graphics objects are always identical, even if the graphics state is modified during the
processing the source.

The SR parameter can be used multiple times in a file. An SR parameter remains effective till
superseded by a new SR parameter.

The number of repeats and the steps can be different in X and Y.

The number of repeats along an axis can be 1, which is equivalent to no repeat. The
corresponding step is then irrelevant. It is recommended to set the step to 0 in that case.

A step & repeat block can contain different polarities (LPD and LPC).

 Warning: It is recommended not to use overlapping steps containing clear and dark
polarity. This is difficult to mentally visualize and probably not always correctly implemented by
Gerber readers. Expect mistakes. A clear object in a block repeat clears all objects beneath it,
including objects from a different copy of the same block. The graphics objects of each copy are
identical but their effect on the image plane may be different. When repeats of blocks with both
dark and clear polarity objects overlap, the step order affects the image; the correct step order
must therefore be respected: step the complete block first in Y and then in X. (When all objects
involved are dark or the repeats do not overlap, the step order has does not affect the image.
The behavior is straightforward and safe to use.)

Copyright Ucamco NV. 104

4.13.1 Data Block Format

The syntax for the SR parameter is:

<SR parameter>: SR[X<Repeats>][Y<Repeats>][I<Step>][J<Step>]*

Syntax Comments

SR SR for Step and Repeat

X<Repeats> Defines the number of times the data is repeated along the X axis. If
missing defaults to 1. If present must be a strictly positive integer.

Y<Repeats> Defines the number of times the data is repeated along the Y axis. If
missing defaults to 1. If present must be a strictly positive integer.

I<Step> Defines the step distance along the X axis. It is mandatory if the
number of repeats along X axis is >1. The step is a non-negative
decimal number, expressed in the unit specified by %MO.

J<Step> Defines the step distance along the Y axis. It is mandatory if the
number of repeats along X axis is >1. The step is a non-negative
decimal number, expressed in the unit specified by %MO.

4.13.2 Examples

Syntax Comments

%SRX2Y3I2.0J3.0*% Repeat the data 2 times along the X axis and 3 times along the Y
axis. The step distance between X-axis repeats is 2.0 units. The
step distance between Y-axis repeats is 3.0 units.

%SRX4Y1I5.0J0*% Repeat the image 4 times along the X axis with the step distance of
5.0 units. The step distance in the J modifier is ignored because no
repeats along the Y axis are specified.

%SRX1Y1I0J0*% Repeat the data 1 time along the X and Y axes, i.e. data is not
repeated.

%SRX1Y1*% Equivalent to the above.

Copyright Ucamco NV. 105

4.14 LP – Level Polarity
The LP parameter starts a new level and sets its polarity to either dark or clear. The level
polarity applies to all data following the LP parameter until superseded by another LP
parameter. This parameter can be used multiple times in a file. The current point is undefined
after the LP parameter and must be set before use. See also 2.2.2.

An example can be found in 4.5.8.

 Warning: Level polarity is not the same as image polarity (see the IP parameter for the
image polarity description).

4.14.1 Data Block Format

The syntax for the LP parameter is:

<LP parameter>: LP(C|D)*

Syntax Comments

LP LP for Level Polarity

C|D Polarity:

C – clear polarity

D – dark polarity

4.14.2 Examples

Syntax Comments

%LPD*% Start a new level with dark polarity

%LPC*% Start a new level with clear polarity

Copyright Ucamco NV. 106

5 Attributes

5.1 Attributes Overview
Where an image simply needs to be rendered, attributes are not necessary, but where that
image must be processed for PCB production, attributes are vital for the correct processing of
the file and its elements. Among other applications, attributes enable design intent to
accompany the images when transferring PCB design data from CAD to CAM. This is
sometimes called rather grandly “adding intelligence to the image”.

Attributes do not change the image – they simply add information to the file and/or to its
individual graphics elements by annotating them with metadata. Examples of this metadata
might be the function of a flash – so a flash might be annotated with the statement that it is an
SMD pad or a via pad for example, or the whole file might be annotated with its overall function,
making it clear that this is the top solder mask, or a drill map etc.

Given that attributes do not affect the image, a Gerber reader will still generate the correct
image even if it ignores the attributes – which it will do when attributes are unnecessary, as in
processes such as image rendering.

There are two basic types of attributes: file attributes associate metadata with the file as a
whole, while aperture attributes associate metadata with individual graphics objects according to
their aperture.

Each attribute consists of an attribute name and an optional attribute value. Attribute names
must follow the naming syntax in section 3.2.3, while attribute values must follow the strings
syntax in section 3.2.4.

The syntax of metadata parameters is similar to that of AM parameters. Each data block
contains just one attribute parameter, each of which should be placed on a separate line for
added clarity.

Semantically, there are standard attributes and custom attributes. Both follow the syntax and
attachment rules laid out in this specification. Standard attributes and their semantics are part of
this specification. Custom attributes, created with users’ proprietary metadata, extend the format
further. Users are encouraged to contact Ucamco at gerber@ucamco.com if they believe that
their custom attributes could be more broadly used. Where these are included in the
specification as standard attributes, authors will be properly acknowledged.

In variance with the rules of section 3.2.3, standard attribute names begin with a decimal point,
while custom attribute names do not.

Standard attributes are intended for the PCB CAD/CAM workflow. Their use is neither
mandatory nor is it “all or nothing”. It is possible to use just one attribute, all of them or none at
all. That said, their broad use is strongly recommended, as they provide vital information in a
standard way – information that must otherwise be gathered from various documents, unwritten
rules, conversations or guesswork, with all the risks of error and delay that this entails. Where
users cannot for some reason provide all the attributes, or are unsure of their use, they are
encouraged to provide those attributes with which they are comfortable; after all, partial
information is better than no information at all. In professional PCB production the bare
minimum is to set the file function attribute.

5.2 File attributes
File attributes provide information about entire files.

The semantics of a file attribute specifies where it must be defined, typically in the header of the
file. A file attribute can only be defined once. It cannot be redefined.

mailto:gerber@ucamco.com

Copyright Ucamco NV. 107

An attribute consists of an attribute name and an optional attribute value.

File attributes are set using the uppercase TF parameter using the following syntax

<TF parameter>: TF<AttributeName>{,<AttributeValue>}

The attribute name must follow the naming syntax in section 3.2.3, with the exception of the dot
with which standard attribute names commence. The attribute value must follow the strings
syntax in section 3.2.4.

5.2.1 Standard File Attributes

The Gerber file format specifies a number of standard file attributes. These are listed in the table
below and subsequently explained in detail. All Standard aperture names and values are case-
sensitive.

Name Usage

.FileFunction Identifies the file’s function in the PCB.

.Part Identifies the part the file represents, e.g. a single PCB

.MD5 Sets the MD5 file signature or checksum.

.GerberVersion Identifies the version of the Gerber file format used

Standard file attributes

5.2.1.1 .FileFunction

The value of the .FileFunction file attribute identifies the function of the file in the PCB. The
attribute must be defined in the file header.

Of all the attributes this is the most important.

The attribute value consists of a number of substrings separated by a “,”:

- Type. Such as copper, solder mask etc. See list below

- Position. Specifies where the file appears in the PCB. Its structure depends on the type

o Copper layer number: L1, L2, L3…. where L1 is the top copper layer

o Attachment: Top or Bot. For extra layers such as solder mask

o Span: i,j. These two integers are the end copper layers of a drill/route file.

- Optional index. This can be used in instances where for example there are two solder
masks on the same side. The index counts from the PCB surface outwards.

The file functions are designed to support all practices and file types in current use. If a type is
missing please contact us at gerber@ucamco.com.

These indications should not be taken as a suggestion that all types listed should always be
included in PCB data sets. Users should include just the types that are required: no more, no
less.

 Note: Some readers, thinking that Gerber cannot define drill files, might be surprised to
see these represented as Gerber image files. In fact, Gerber files convey CAD/CAM drill
information perfectly well. This is because it is image information that shows where material
must be removed. Of course a Gerber file cannot be sent to a drill machine, but this is not the

Copyright Ucamco NV. 108

issue here. No manufacturer uses his client’s incoming design files directly on his equipment.
The design files are always read in a CAM system, and it is the CAM system that will output drill
files in an NC format, including feeds and speeds. As the copper, mask, drill and route files are
all image files to be read into the CAM system, it is best to use the same format for them all,
thereby ensuring optimal accuracy, registration and compatibility. Mixing formats needlessly is
asking for needless problems.

This specification contrasts with common practice in that it does not differentiate between
drilling and routing, and instead represents both using drill file functions. This is because these
two admittedly distinct manufacturing processes are identical from the point of view of their
image descriptions: the image simply represents where material is removed. Note that the
choice between drilling and routing is not always obvious: a slot can be nibbled (drilled), a larger
round hole can be routed with a rout tool.

Here we follow the customary practice of putting blind and buried drills in separate files.
Similarly, for clarity and consistency with this practice, we have opted to use separate files for
NPTH and PTH tools – which is also easier for systems that do not handle attributes.

.FileFunction value Remark

Copper,L<p>[,<label>] A conductor or copper layer. Lp – where p is an
integer – indicates layer position where L1 is
the top layer. The optional label can take the
values Plane, Signal or Mixed. These labels
are not exactly defined so they can be used in
various ways, the file creator adding a label as
appropriate. The file reader uses this
information at his own risk.

Soldermask,(Top|Bot)[,<i>] The image represents the solder mask
openings

Legend,(Top|Bot)[,<i>]

Goldmask,(Top|Bot)

Silvermask,(Top|Bot)

Tinmask,(Top|Bot)

Carbonmask,(Top|Bot)

Peel-off,(Top|Bot)

Viafill,(Top|Bot)

Glue,(Top|Bot)

Keep-out,(Top|Bot)

Paste,(Top|Bot)

HeatSink,(Top|Bot)

Pads,(Top|Bot)

Copyright Ucamco NV. 109

Scoring,(Top|Bot)

NPTH[,<label>] Non- plated through hole drill/route. The
optional label can take the values Drill, Route,
Mixed. These labels are not exactly defined so
they can be used in various ways, the file
creator adding a label as appropriate. The file
reader uses this information at his own risk.

PTH[,<label>] Plated through hole drill/route. See NPTH for
the optional label.

Plated,i,j[,<label>] Plated drill/rout from layer i to layer j, e.g. blind
and buried vias. Not to be used for PTH as
these have a separate function. See NPTH for
the optional label.

Nonplated,i,j[,<label>] Nonplated drill/rout from layer i to layer j, e.g.
backdrill. Not to be used for NPTH as these
have a separate function. See NPTH for the
optional label.

Profile,(P|NP) Profile (outline)

Drillmap A drill map drawing

Assembly An assembly drawing

Mechanical A mechanical drawing

Drawing Any other drawing

Other,<string> None of the above. The mandatory string
informally indicates the file function.

.FileFunction file attribute values

 Example:

Below is an example of file function attribute statements in a set of files describing a simple 4-
layer PCB. Only one attribute in each file of course!

%TF.FileFunction,Legend,Top*%

%TF.FileFunction,Soldermask,Top*%

%TF.FileFunction,Copper,L1*%

%TF.FileFunction,Copper,L2*,Plane%

%TF.FileFunction,Copper,L3*,Plane%

%TF.FileFunction,Copper,L4*%

%TF.FileFunction,Soldermask,Bot*%

%TF.FileFunction,NPTH*,Drill%

%TF.FileFunction,NPTH*,Route%

Copyright Ucamco NV. 110

%TF.FileFunction,PTH*%

%TF.FileFunction,Profile,NP*%

%TF.FileFunction,Drillmap*%

%TF.FileFunction,Drawing*%

%TF.FileFunction,Drawing*%

 Note: The top copper layer is expressed by L1, not Top. Copper,Top does not exist.

 Note: There is no attribute indicating positive and negative layers. This is intentional.
Positive or negative affects the image and therefore must not be handled by attributes.
Furthermore, positive/negative encoding is already taken care of by the IP parameter.

5.2.1.2 .Part

The value of the .Part file attribute identifies which part is described. The attribute must be
defined in the file header.

.Part value Remark

Single Single PCB

CustomerPanel A.k.a. array or shipping panel

ProductionPanel A.k.a. working panel, fabrication panel

Coupon A coupon

Other,<string> None of the above. The mandatory string informally
indicates the part.

.Part file attribute values

 Example:

%TF.Part,CustomerPanel*%

Copyright Ucamco NV. 111

5.2.1.3 .MD5

The .MD5 file attribute, expressed in hexadecimal digits, sets a file signature (or checksum) that
is calculated using the well-known MD5 algorithm.

The signature uniquely identifies the file and provides a high degree of security by allowing
checks to be made for accidental modifications during storage or transmission. There is an
astronomical degree of certainty that files with the same signature will be identical.

The signature is calculated over the file from the beginning till the last character before this
attribute. The CR and LF are excluded from signature calculation as they do not affect the
interpretation of the file but may be altered when moving platforms. By excluding them, the
signature maintains portability without sacrificing security.

The signature must be put at the end of the file, just before the closing M02. Thus the file can be
processed in a single pass.

 Example:

%TF.MD5,e4d909c290d0fb1ca068ffaddf22cbd0*%

M02*

5.2.1.4 .GerberVersion

The .GerberVersion file attribute identifies the version of the Gerber file format used. It has one
mandatory value: the revision of the format specification to which the file is intended to conform.

When used, it must be the first block in the file so that the file reader can use this information
when processing the file.

 Example:

%TF.GerberVersion,J1*%

Copyright Ucamco NV. 112

5.3 Aperture Attributes

5.3.1 Aperture Attributes Overview

Each aperture attribute is associated with an aperture and hence with all graphics objects
generated with that aperture. The term aperture attribute is actually shorthand for graphics
object attribute defined by aperture.

Objects are associated with apertures using the current attribute dictionary, which contains all
current aperture attributes. It is defined after each statement in the file, as follows:

 Initially the current attribute dictionary is empty.

 Aperture attributes are added with the TA parameters

 Aperture attributes are deleted from it with the TD parameter.

When an AD parameter defines an aperture, all aperture attributes in the current dictionary are
associated with that aperture.

 Note: When aperture attributes are set for an aperture, all graphics objects created with
that aperture will inherit its attributes. This is why it is important that objects with different
attributes, even if they are the same shape and size, must be created with different apertures.
There may be a temptation to 'optimize' the file by merging apertures of the same shape and
size, even if they have different functions. Resist that temptation. Use a separate aperture
whenever the attributes should be different, otherwise the file is very hard to handle in CAM.

5.3.2 Aperture Attributes Statements

The parameters listed in the table below affect Aperture Attributes. All parameters are upper
case.

Parameter Name Description

TA Set aperture
attribute

Enters an aperture attribute in the current dictionary.

TD Delete attribute Deletes a previously defined aperture attribute from
the current dictionary. The deleted attribute will not
be set on data following this parameter.

DR Set region D-code Associates regions with a D-code to associate
aperture attributes with regions

Aperture attribute parameters

Warning: Aperture Attribute Parameter cannot be used in region mode.

5.3.2.1 Set aperture attributes (TA)

The parameter TA enters an aperture attribute into the current dictionary. The syntax rules are
the same as for the TF parameter:

Copyright Ucamco NV. 113

<TA parameter>: TA<AttributeName>{,<AttributeValue>}

The attribute name must follow the naming syntax in section 3.2.3 (with the exception of the dot
with which standard attribute names must start.) This name must be unique and must not
already be in use for a file attribute. The value of an aperture attribute can be overruled by using
the TA parameter with the same name, but a new value.

The attribute value follows the syntax of strings in section 3.2.4.

 Example: defining an aperture attribute

%TA.AperFunction,ComponentPad*%

%TAMyApertureAttributeWithValue,value*%

%TAMyApertureAttributeWithoutValue*%

 Example: overruling the value of an aperture attribute

%TA.AperFunction,ComponentPad*%

%TA.AperFunction,ViaPad*%

5.3.2.2 Delete attribute (TD)

The parameter TD deletes an attribute from the current dictionary, but the attribute remains
attached to apertures and objects to which it was attached before it was deleted.

<TD parameter>: TD<AttributeName>

<AttributeName>: The name of the attribute to delete.

Warning: TD cannot be used on file attributes.

5.3.2.3 Select Region aperture (DR)

Draws, arcs and flashes are graphics objects created with apertures, so aperture attributes can
be associated with them. Regions, on the other hand, are not created using apertures, so
aperture attributes cannot be associated with them.

This asymmetry is not desirable. For example, it is possible to use a number of dedicated
apertures with the attribute ‘Conductor’ to identify objects whose function is purely conductive.
This works well for draws and arcs but not for regions that are also often purely conductive. With
the parameters that have thus far been defined this is not possible. The parameter DR (Select
Region Aperture) makes this possible by associating regions with an aperture number.

The following example shows how DR is used: %DR33*% sets the region aperture to 33; all

regions created with region aperture 33 take the attributes associated with aperture 33.
Attribute-wise these regions behave as if they were created using aperture 33. The region

aperture remains set to 33 until it is overruled by another %DRn*% or cleared by %DR*%.

When the image does not contain an aperture with the attributes needed for a certain region,
one should define a virtual aperture.

5.3.2.4 Virtual aperture (AV)

A region can be associated with the attributes of an aperture by using the DR parameter.
However there may not be a real aperture, (one used for flashing or stroking) with the desired

Copyright Ucamco NV. 114

attributes for the region or painted section. This problem can be solved by defining an aperture
that is not used for imaging and whose sole purpose is to carry attributes. However, this is
somewhat artificial and misleading, as apertures are intended for imaging.

A cleaner solution is to use the AV (Virtual Aperture) parameter to overcome this problem. The

statement %AVn* (e.g. %AV56*) defines a virtual aperture with aperture number n, and all

apertures in the current aperture dictionary are attached to it. A region can then be attached to

this virtual aperture using %DRn*, in the same way as it would be attached to a normal aperture.

A virtual aperture can only be selected using the DR parameter. It cannot be selected using

%Dnn*% (nn≥10.)

Warning: It is not possible to define a virtual aperture with the same aperture number as
an aperture defined by AD.

5.3.3 Standard Aperture Attributes

5.3.3.1 .AperFunction

This aperture attribute defines the function or purpose of an aperture, or rather the graphics
objects created with that aperture. Of course, functions can only be defined in a file with an
applicable function. For example, an SMD pad can only be defined on an outer copper layer.

Users are encouraged to identify the function of all apertures. If this is not possible for some
apertures, it is highly recommended that the aperture function is identified wherever possible –
partial information is always better than no information.

The values this attribute can have are defined in the following table.

.AperFunction value(s) Remark Applicable
File
Function

ComponentDrill A hole for component pins NPTH,
PTH,
Plated,
Nonplated

ViaDrill,(Filled|NotFilled) A via hole. Not used for
components. Filled for filled holes,
NotFilled for free holes.

MechanicalDrill A hole with mechanical function
(registration, screw, etc.)

BackDrill Removes plating in a hole over a
depth by drilling with a slightly larger
diameter.

OtherDrill,<string> A hole, but none of the above. The
mandatory string informally
describes the type.

ComponentPad A component pad. Copper

SMDPad,(SMDef|CuDef) An SMD pad. SMDef for solder

mask defined, CuDef for copper
defined.

Copyright Ucamco NV. 115

BGAPad,(SMDef|CuDef) A BGA pad. SMDef for solder mask
defined, CuDef for copper defined.

HeatSinkPad Heat sink pad (typically for SMDs)

TestPad A test pad.

ConnectorPad A connector pad.

ViaPad A via pad. It provides a ring to
attach the plating in the barrel but
has no other function.

FiducialPad,(Global|Local) A fiducial pad. Local refers to a
component fiducial, Global refers to
an entire image or PCB fiducial.

ThermalReliefPad A thermal relief pad, connected to
the surrounding copper while
restricting heat flow.

WasherPad A pad around a tooling hole. Uses
include grounding the copper using
a bolt.

AntiPad A pad with clearing polarity (LPC)
creating a clearance in a plane. It
makes room for a drill pass without
connecting to the plane.

OtherPad,<string> A pad not specified above. Must be
accompanied with a description.

Conductor,(NotC|(ImpC,

<string>))

Copper whose function is to connect
pads and/or to shield. ImpC means
impedance controlled, NotC means
not impedance controlled. The
string identifies the impedance
control type, especially important if
there is more than one type in the
PCB.

Nonconductor Copper that does not serve as a
conductor; typically text and
graphical elements without electrical
function.

CopperBalancing Copper pattern added to balance
copper coverage for the plating
process.

Border Border around a panel.

Other,<string> Indicates another function. Must be
accompanied by a description.

Copyright Ucamco NV. 116

Profile Used to define PCB outline or
profile. Profiles can be present in all
PCB layers. This does not mean we
recommend this, but we observe
this happens and therefore enable
its identification.

All

Nonmaterial For objects that do not represent the
material in the file, or objects that
are not present in the PCB. For
example the copper pattern is
sometimes surrounded by a border
containing information like a
technical drawing rather than a data
file. This border is not part of the
copper pattern, and does not
represent copper. It is strongly
recommended to put this
information in a separate document
rather than combining it with the
true copper pattern. But if you insist
on mixing a drawing with a data file
use the nonmaterial attribute to
identify it.

Material Identifies the proper part of the data
file, complementing the nonmaterial
above. For copper and drill layers
this function is split into more
detailed functions.

All except
drills and
copper

.AperFunction aperture attribute values

5.3.3.2 Drill Tool Parameters

The aperture attributes defined in this section may only be associated with attributes in drill/rout
files. They define properties for the drill holes.

5.3.3.2.1 .DrillTolerance

This attribute defines the plus and minus tolerance of a drill hole. Both values are positive
decimals expressed in the MO units.

.DrillTolerance,<plus tolerance>,<minus tolerance>

Copyright Ucamco NV. 117

5.3.4 Examples

 Example 1, simple aperture attribute:

%ADD13R,200X200*% G04 this aperture has no attribute*

D13*

%TAIAmATA*%

X0Y0D03* G04 this flash has no attribute*

%ADD11R,200X200*% G04 this aperture now has attribute IAmATA*

%TDIAmATA*%

%ADD12C,5*% G04 this aperture does not have attribute IAmATA*

D11*

X100Y0D03* G04 this flash has attribute IAmATA*

X150Y50D02*

D12*

X100Y150D01* G04 this draw has no attribute*

 Example 3, aperture attribute, definition & changing value:

%TA.AperFunction,SMDPad*% G04 Enters attribute .AperFunction in the

current dictionary with value “SMDPad” to

identify SMD pads*

%ADD11…*% G04 Ape. 11 gets the .Function,SMDPad

attribute*

%TA.AperFunction,Cond*% G04 Changes the value of .AperFunction

attribute to define conductors*

%ADD20…*% G04 Ap. 20 gets the .Function,Conductor att.*

%TACustAttr,val*% G04 Enters attribute “CustAttr” in the current

dictionary and sets its value to “val”.*

%AV21*% G04 Virtual aperture 21 is a conductor with

attribute CustAttr = val.*

%TD.AperFunction*% G04 Deletes the .AperFunction attribute from

the current directory.*

%ADD22…*% G04 Ap. 22 has no associated .AperFunction

attribute, but has attribute CustAttr = val.*

%TDCustAttr *% G04 Deletes the CustAttr attribute from the

current directory.*

%ADD23…*% G04 Ap. 21 has no aperture attribute.*

…

D11*

X1000Y1000D03* G04 Flash an SMD pad*

D20*

X2000Y1500D01* G04 Draw a conductor*

%DR20*% G04 Associate regions with ap. 20*

Copyright Ucamco NV. 118

D23* G04 Use aperture 23 for graphics objects. The

region aperture is not changed.*

X2000Y3000D03* G04 A flash without apertures*

G36* G04 Start a conductive region. (Still

associated with aperture 20)*

….

G37*

X1000Y1000D03* G04 Flash an SMD pad*

%DR21*% G04 Associate regions with virtual ap. 21*

G36* G04 Start a conductive region with CustAttr =

val.*

….

G37*

%DR*% G04 Regions are no longer linked with an

aperture.*

%TDSomeAttr*% G04 Delete attribute SomeAttr*

G36* G04 Start a region, without attributes.*

….

G37*

Copyright Ucamco NV. 119

6 Most Common Errors & Bad Practice

6.1 Most Common Errors
Poor implementation of the Gerber format can give rise to invalid Gerber files or – worse – valid
Gerber files that do not represent the intended image. The table below lists the most common
errors.

Symptom Cause and Correct Usage

Full circles unexpectedly appear or
disappear.

The file contains arcs but no G74 or G75.
This is invalid. A G74 or G75 is mandatory
if arcs are used.

See 4.3.6.

Rotating aperture macros using
primitive 21 gives unexpected results.

Some CAD systems incorrectly assume that
primitive 21 rotates around its center. It does
not – it rotates around the origin.

See 4.12.2.4.

Unexpected image after an aperture
change or a D03.

Coordinates have been used without an
explicit D01/D02/D03 operation code. This
practice is deprecated because it leads to
confusion about which operation code to use.

The D01/D02/D03 operation code should
always be included with the coordinate
data.

See 7.1.

Objects unexpectedly appear or
disappear under holes in standard
apertures.

Some CAD systems incorrectly assume the
hole in an aperture clears (erases) the
underlying objects. This is wrong, the hole is
transparent and has no effect on the
underlying image.

See 4.11.2.

Objects unexpectedly appear or
disappear under holes in macro
apertures.

Some CAD systems incorrectly assume that
exposure off in a macro aperture clears
(erases) the underlying objects under the
flash. This is wrong, exposure off creates a
hole in the aperture and that hole has no
effect on the image.

See 4.12.1.

Openings in areas disappear, typically
with clearances in planes

Overlapping segments have been used to
construct cut-ins. This is an error. Coincident
segments should be used instead. Note that
cut-ins are not intended for complex planes;
use a layer in LPC to make clearances in a
plane.

See 4.4.

Copyright Ucamco NV. 120

Polygons are smaller than expected. Some CAD systems incorrectly assume the
parameter of a Regular Polygon specifies the
inside diameter. It does not: it specifies the
outside diameter.

See 4.11.3.4.

A single Gerber file contains more than
one image, separated by M00, M01 or
M02

This is invalid. A Gerber file can contain only
one image.

One file, one image. One image, one file.

Contour fill defined in a Level Polarity
Clear (%LPC) unintentionally erases a
previously defined object at that
location

As for any other object in an LPC section,
Contour fill does indeed clear (erase) any
underlying objects. (here, clear does not
mean transparent). Objects can be added to
the location after the clear.

See 2.2.2.

The MI parameter is used to mirror a
macro definition but the result is not as
expected.

With the MI parameter mirroring is not
applied to aperture definitions. Do not use
this confusing and deprecated parameter.
Apply the transformation directly in the
aperture definitions and object coordinates.

See 7.3.4.

Reported Common Errors

6.2 Most Common Bad Practices
Some Gerber files are syntactically correct but are needlessly cumbersome or error-prone. The
table below summarizes common poor practices and gives the corresponding good practice.

Bad Practice Problems Good Practice

Low resolution
(numerical precision)

Poor registration of objects between
PCB layers; loss of accuracy;
possible self-intersecting contours;
invalidated arcs; zero-arcs. These
can give rise to unexpected results
downstream. Note that putting the file
through software processing
unavoidably adds further numerical
rounding, further aggravating the
problem.

Use 6 decimal places
in imperial and 5
decimal places in
metric.

Do not sacrifice
precision to save a few
bytes

Multi quadrant mode
and rounding errors

In G75 mode and due to rounding, a
small arc suddenly becomes a full
circle as the start and end points end
up on top of one another.

Use G74 single
quadrant mode or take
very great care when
rounding on small arcs

Imprecisely
positioned arc center
points

An imprecisely positioned center
makes the arc ambiguous and open
to interpretation. This can lead to
unexpected results.

See 4.3.2

Always position arc
center points
precisely

Copyright Ucamco NV. 121

Painted or stroked
pads

Painted pads produce the correct
image but are very awkward and time
consuming for CAM software in
terms of DRC checks, electrical test
and so on. Stroking was needed for
vector photoplotters in the 1960s and
1970s, but these devices are as
outdated as the mechanical
typewriter.

Always use flashed
pads. Define pads,
including SMD pads,
with the AD and AM
parameters

Painted or stroked
areas

As above, painted areas produce the
correct image, but the files are
needlessly large and the data is very
confusing for CAM software.

Always use contours
(G36/G37) to define
areas

The use of cut-ins to
construct clearances
in planes (anti-pads)

Using cut-ins for such complex
constructions can give rise to
rounding errors. Furthermore, CAM
systems cannot work with such
constructions so must first resolve
the cut-ins and recover the anti-pads.

Construct planes and
anti-pads using an
LPD layer for the
plane and an LPC
layer for the holes
(anti-pads)

Standard Gerber or
RS-274-D

Standard Gerber is deprecated. It
was designed for a workflow that is
as obsolete as the mechanical
typewriter. It requires manual labor to
process. It is not suitable for today’s
image exchange. Do not use it.

Always use Extended
Gerber.

Common poor/good practices

Copyright Ucamco NV. 122

7 Deprecated Format Elements

7.1 Coordinate Data Blocks without Operation Code
Previous versions of the specification allowed coordinate data without explicit operation
code in a few situations. In the absence of an explicit operation code, a deprecated
operation mode operates on the coordinates.

A D01 sets the operation mode to interpolate. It remains in interpolate mode till any other D
code is encountered. (In older terminology, D01 turns the light on, and D02 turns it off.)This
allows omitting an explicit D01 after the first coordinate data block only in sequences of D01
data blocks.

 Example:

D10*

X700Y1000D01*

X1200Y1000*

X1200Y1300*

D11*

X1700Y2000D01*

X2200Y2000*

X2200Y2300*

This saves a few bytes. However, coordinate data blocks without explicit operation code are
not intuitive and lead to errors. This risk far outweighs the meager benefit of saving a few
bytes. Coordinates with operation code are therefore deprecated.

The operation mode is only defined after a D01 or D02. In other words the operation mode
after a D03 or an aperture selection (Dnn with nn≥10) is undefined. Therefore a file
containing coordinates without operation code after a D03 or an aperture selection (Dnn with
nn≥10) is invalid.

Note that consequently a Gerber writer can neither assume that D03 behaves modally nor
not modally.

 Warning: Avoid writing coordinates without operation code like the plague. The risk of
using them lies solely with the writer of the file.

7.2 Open Contours
Previous versions of the specification allowed leaving contours open in a region definition.

Before the region is created all open contours are closed by connecting the last point to the
first with a straight draw. Closing the contour does not move the current point; the current
remains at the last coordinate in the file.

Open contours can be misunderstood and are therefore deprecated. Contours must be
explicitly closed.

Moves (D02) with zero length in open contours are not allowed as they are confusing.

Contours that become self-intersecting after the automatic closure are of course not
allowed.

Copyright Ucamco NV. 123

7.3 Deprecated Statements
The next table lists deprecated codes.

Code Function Comments

G54 Select aperture This historic code optionally precedes an
aperture selection D-code. It has no effect. It
is superfluous and deprecated.

G55 Prepare for flash This historic code optionally precedes D03
code. It has no effect. It is superfluous and
deprecated.

G70 Set the ‘Unit’ to inch These historic codes perform a function
handled by the MO parameter. See 4.9. They
are superfluous and deprecated. G71 Set the ‘Unit’ to mm

G90 Set the ‘Coordinate format’ to
‘Absolute notation’

These historic codes perform a function
handled by the FS parameter. See 4.8. They
are superfluous and deprecated.

G91 Set the ‘Coordinate format’ to
‘Incremental notation’

M00 Program stop This historic code has the same effect as
M02. It is superfluous and deprecated.

M01 Optional stop This historic code has no effect. It is
superfluous and deprecated.

Deprecated codes

Gerber writers can no longer use deprecated codes.

Gerber readers may implement them to support legacy applications and files. The codes
G54, G70 and G71 are still found from time to time. The other codes are very rarely, if ever,
found.

The table below lists the deprecated parameters. They are explained later in this chapter.

Parameter Function Description Comments

AS Axis Select Sets the ‘Axes correspondence’
graphics state variable

These parameters can
only be used once, at
the beginning of the
file. IN Image Name Sets the name of the file image

IR Image Rotation Sets ‘Image rotation’ graphics
state variable

MI Mirror Image Sets ‘Image mirroring’ graphics
state variable

Copyright Ucamco NV. 124

OF Offset Sets ‘Image offset’ graphics state
variable

SF Scale Factor Sets ‘Scale factor’ graphics state
variable

LN Layer name LN has no effect on the image. It
is no more than a comment

Can be used many
times in the file.

Deprecated parameters

The order of execution of these parameters is always MI, SF, OF, IR and AS, independent
of their order of appearance in the file.

Gerber writers (creators of Gerber files) must not use deprecated parameters.

Gerber readers may support deprecated parameters. There are few legacy files and
applications generating these deprecated parameters. However this it is nearly always, if not
always, to confirm the default value; in other words they have no effect. It is probably a
waste of time to implement these parameters.

The following table contains deprecated graphics state variables.

Graphics state
variable

Values range Fixed Value at the
beginning of
a file

Axes
correspondence

AXBY, AYBX

See AS parameter

Yes AXBY

Image mirroring See MI parameter Yes A0B0

Image offset See OF parameter Yes A0B0

Image rotation 0°, 90°, 180°, 270°

See IR parameter

Yes 0°

Scale factor See SF parameter Yes A1B1

Deprecated graphics state variables

Copyright Ucamco NV. 125

7.3.1 AS – Axis Select

The AS parameter sets the correspondence between the X, Y data axes and the A, B
output device axes. Note that it only has an effect when the Gerber file is sent to an output
device. It has no effect on the image in computer to computer data exchange.

This parameter affects the entire image. It can only be used once, at the beginning of the
file.

7.3.1.1 Data Block Format

The syntax for the AS parameter is:

<AS parameter>: AS(AXBY|AYBX)*

Syntax Comments

AS AS for Axis Select

AXBY Assign output device axis A to data axis X, output device axis B to
data axis Y

AYBX Assign output device axis A to data axis Y, output device axis B to
data axis X

7.3.1.2 Examples

Syntax Comments

%ASAXBY*% Assign output device axis A to data axis X and output device axis B
to data axis Y

%ASAYBX*% Assign output device axis A to data axis Y and output device axis B
to data axis X

7.3.2 IN - Image Name

The IN parameter identifies the entire image contained in the Gerber file. The name must
comply with the syntax rules for a string (confusingly not for a name) as described in section
3.2.4. This parameter can only be used once, at the beginning of the file.

IN has no effect on the image. A reader can ignore this parameter. IN was intended to make
the file easier to read for humans. However, this can also be achieved with a plain G04
comment. LN is no longer useful to man or machine and has been deprecated.

7.3.2.1 Data Block Format

The syntax for the IN parameter is:

<IN parameter>: IN<Name>*

Syntax Comments

Copyright Ucamco NV. 126

IN IN for Image Name

<Name> Image name

7.3.2.2 Examples

Syntax Comments

%INPANEL_1*% Image name is ‘PANEL_1’

Copyright Ucamco NV. 127

7.3.3 IR – Image Rotation

The IR parameter is used to rotate the entire image counterclockwise in increments of 90°
around the image (0, 0) point. All image objects are rotated.

The IR parameter affects the entire image. It must be used only once at the beginning of
the file.

7.3.3.1 Data Block Format

The syntax for the IR parameter is:

<IR parameter>: IR(0|90|180|270)*

Syntax Comments

IR IR for Image Rotation

0 Image rotation is 0° counterclockwise (no rotation)

90 Image rotation is 90° counterclockwise

180 Image rotation is 180° counterclockwise

270 Image rotation is 270° counterclockwise

7.3.3.2 Examples

Syntax Comments

%IR0*% No rotation

%IR90*% Image rotation is 90° counterclockwise

%IR270*% Image rotation is 270° counterclockwise

Copyright Ucamco NV. 128

7.3.4 LN – Level Name

The LN parameter identifies the current level. The name must comply with the syntax rules
for a string (confusingly not for a name) as described in section 3.2.4. This parameter can
be used multiple times in a file.

LN has no effect on the image. A reader can ignore this parameter. LN was intended to
make the file easier to read for humans. However, this can also be achieved with a plain
G04 comment. LN is no longer useful to man or machine and has been deprecated.

7.3.4.1 Data Block Format

The syntax for the LN parameter is:

<LN parameter>: LN<Name>*

Syntax Comments

LN LN for Level Name

<Name> Level name

7.3.4.2 Examples

Syntax Comments

%LNVia_anti-pads*% The name ‘Via_anti-pads’ is assigned to the current level.

Copyright Ucamco NV. 129

7.3.5 MI – Mirror Image

The MI parameter is used to turn axis mirroring on or off. When on, all A- and/or B-axis data
is mirrored (that is, inverted or multiplied by -1). MI does not mirror special apertures!

This parameter affects the entire image. It can only be used once, at the beginning of the
file.

 Note: Mirroring A-axis data flips the image about the B axis and mirroring B-axis data
flips the image about the A axis.

 Warning: It is strongly recommended not to use the MI parameter. Avoid it like the
plague. The exception for special apertures is confusing and leads to mistakes. If an image
must be mirrored, write out the mirrored coordinates and apertures.

7.3.5.1 Data Block Format

The syntax for the MI parameter is:

<MI parameter>: MI[A(0|1)][B(0|1)]*

Syntax Comments

MI MI for Mirror image

A(0|1) Controls mirroring of the A-axis data:

A0 – disables mirroring

A1 – enables mirroring (the image will be flipped over the B-axis)

If the A part is missing then mirroring is disabled for the A-axis data

B(0|1) Controls mirroring of the B-axis data:

B0 – disables mirroring

B1 – enables mirroring (the image will be flipped over the A-axis)

If the B part is missing then mirroring is disabled for the B-axis data

7.3.5.2 Examples

Syntax Comments

%MIA0B0*% No mirroring of A- or B-axis data

%MIA0B1*% No mirroring of A-axis data.

Mirror B-axis data

%MIB1*% No mirroring of A-axis data.

Mirror B-axis data

Copyright Ucamco NV. 130

7.3.6 OF - Offset

The OF parameter moves the final image up to plus or minus 99999.99999 units from the
imaging device (0,0) point. The image can be moved along the imaging device A or B axis,
or both. The offset values used by OF parameter are absolute. If the A or B part is missing,
the corresponding offset is 0. The offset values are expressed in units specified by MO
parameter.

This parameter affects the entire image. It can only be used once, at the beginning of the
file.

7.3.6.1 Data Block Format

The syntax for the OF parameter is:

<OF parameter>: OF[A<Offset>][B<Offset>]*

Syntax Comments

OF OF for Offset

A<Offset> Defines the offset along the output device A axis

B<Offset> Defines the offset along the output device B axis

The <Offset> value is a decimal number n preceded by the optional sign (‘+’ or ‘-’) with the
following limitation:

0 ≤ n ≤ 99999.99999

The decimal part of n consists of not more than 5 digits.

7.3.6.2 Examples

Syntax Comments

%OFA0B0*% No offset

%OFA1.0B-1.5*% Defines the offset: 1 unit along the A axis, -1.5 units along the B axis

%OFB5.0*% Defines the offset: 0 units (i.e. no offset) along the A axis, 5 units along
the B axis

Copyright Ucamco NV. 131

7.3.7 SF – Scale Factor

The SF parameter sets a scale factor for the output device A- and/or B-axis data. The factor
values must be between 0.0001 and 999.99999. The scale factor can be different for A and
B axes. If no scale factor is set for an axis the default value ‘1’ is used for that axis.

All the coordinate data are multiplied by the specified factor value for the corresponding
axis. Note that apertures are not scaled.

This parameter affects the entire image. It can only be used once, at the beginning of the
file.

7.3.7.1 Data Block Format

The syntax for the SF parameter is:

<SF parameter>: SF[A<Factor>][B<Factor>]*

Syntax Comments

SF SF for Scale Factor

A<Factor> Defines the scale factor for the A-axis data

B<Factor> Defines the scale factor for the B-axis data

The <Factor> value is an unsigned decimal number n with the following limitation:

0.0001 ≤ n ≤ 999.99999

The decimal part of n consists of not more than 5 digits.

7.3.7.2 Examples

Syntax Comments

%SFA1B1*% Scale factor 1

%SFA.5B3*% Defines the scale factor: 0.5 for the A-axis data, 3 for the B-axis data

Copyright Ucamco NV. 132

7.4 Deprecated Standard Gerber (RS-274-D)
The current Gerber file format is also known as RS-274X or Extended Gerber. There is also a
historic format called Standard Gerber or RS-274-D format. It differs from the current Gerber file
format (RS-274X), in that it:

 does not support G36 and G37 codes

 supports the deprecated codes, and

 does not support parameters; coordinate format and apertures cannot be defined

7.4.1 Standard Gerber must not be used

Standard Gerber is obsolete and deprecated. The word “standard” is misleading here. Standard
Gerber is standard NC format. It is not a standard image format: image generation needs a so-
called wheel file, and that wheel file is not governed by a standard. Therefore the interpretation
of a wheel files, and consequently of a Standard Gerber files, is subjective. In Extended Gerber
(RS-274X) image generation is fully governed by the standard. Extended Gerber is the true
image standard.

Standard Gerber has many drawbacks over the current Gerber file format and not a single
advantage. It is not suited for automatic processing. We strongly recommend always - always -
to use Extended Gerber (RS-274X) and never Standard Gerber. We can see no reason why
anyone in his right mind would use Standard Gerber rather than Extended Gerber.

Warning: The responsibility of any misunderstandings about the image generated with a
Standard Gerber file rests solely with the party that decided to use Standard Gerber, with it’s
non-standardized wheel file, rather than fully standardized Extended Gerber.

7.4.2 Origin and purpose of Standard Gerber

In the 1960s and 1970s, images were produced on lithographic film by a vector photoplotter, a
precision optical Numerical Control machine. Images were produced by beaming light from the
plotter's light source onto the film through an aperture on a wheel like that shown in the
photograph below. This wheel was rotated to select the appropriate aperture, or it could be
substituted by another aperture wheel if additional aperture sizes were needed.

Copyright Ucamco NV. 133

The data for the exposure process was contained in a Standard Gerber file, which was typically
recorded onto magnetic or paper tape (see pictures), which was in turn mounted onto the vector
photoplotter by the operator.

The operator consulted the accompanying notes, typed the coordinate format on a machine
console, mounted the appropriate aperture wheel, changed apertures if necessary, and started
the plotter. The Standard Gerber file then drove the plotter through the required movements,
controlled the aperture wheel and exposure light, and produced the desired image.

Standard Gerber was so well suited to this task that it became the industry standard.

That was decades ago. Vector photoplotters have not been used since, so Standard Gerber has
lost its raison d'être. While it deserves a place of honor in the Computer History Museum,
Standard Gerber has no place at all in the 21st century's electronics industry.

Copyright Ucamco NV. 134

Of course, everyone is free. If you still send your data by paper tape or half-inch magtape, by all
means, use Standard Gerber. Otherwise, use Extended Gerber.

7.4.3 Standard Gerber is a NC format, not an image format

From the above, it is clear that Standard Gerber is an NC (Numerical Control) machine format,
and not an image description format. It contains neither the coordinate format definition, so the
meaning of coordinate data is undefined, nor aperture definitions, so the meaning of flashes and
interpolations is undefined.

Thus if an image is to be defined using Standard Gerber, additional information is essential.
This typically comes in the form of a so called “wheel file” consisting of notes in an informal text
format, plus drawings that define the more complex apertures. The problem is that there is no
standard for this extra information, creating enormous potential for error and misunderstandings.
This puts the onus squarely on operators' shoulders to ensure that all of the information is
assembled and checked on a workstation – manually and with the help of software tools – in
order to be sure that all the necessary image data is present.

As if this were not enough, an additional issue is that Standard Gerber renders the informal
description of complex apertures, SMD apertures and areas so difficult that designers give up,
and opt instead to paint them. This in turn creates such chaos that there is a very real risk of
losing valuable data in both CAD and CAM operations. Thus the CAM engineer must be
extremely careful to recover, and piece together, the pads in the design.

All of which renders Standard Gerber totally unsuitable for current CAD to CAM data transfer.
This format, from the days of paper tape, punched cards, teletypes and electrical typewriters,
offers not one single advantage over Extended Gerber.

So Standard Gerber, despite its name, is not an image definition standard, as it must be
supported by a whole lot of extra non-standardized information in order to define an image.
That's why Ucamco has defined the new Extended Gerber format. This, unlike its predecessor,
is a standard, as it standardizes the additional data needed, puts it in the file header, and adds
some sorely needed extensions.

7.4.4 A fallacy

The following is sometimes said: “The only difference between Standard Gerber and Extended
Gerber is that in Extended Gerber the wheel file is embedded in the file. As software was
developed to extract data automatically from the wheel files, this is no big deal.”

We beg to differ:

 It is not the only difference.

 This difference is a big deal.

Firstly, the other big difference is that Extended Gerber is a richer format that has all the
constructs necessary for describing a PCB image efficiently. It has regions, positive/negative
levels and powerful aperture macros. Planes and anti-pads can be described without painting.
Pads are properly described as flashes, ensuring that no data is lost.

Secondly, this difference is a really big deal. While it is true that a lot of effort was spent on
automating the task of inputting the accompanying notes, only a fraction of all data sets can in
fact be read in automatically because they are in a free format. While this freedom was perfectly
adequate for the vector photoplotter operator of old, it flies in the face of standardization and
automation, which consequently becomes a less reliable and higher maintenance process. And
what happens if the notes arrive in another language – imagine, for example, automating the
input of a wheel file in Japanese. Or of its supporting drawings, for which again, there are no
format definitions. It becomes clear pretty quickly that it is not possible to fully and reliably
automate the transfer of such informal data, so the operator must carefully check all results for

Copyright Ucamco NV. 135

errors. This is particularly important if we consider that a lack of standards can also mean lack
of clarity about the intentions of the designer, and where responsibility lies in case of errors.

Compare this with the clarity of the formal, standardized aperture definitions in Extended
Gerber: reading them in is straightforward, with no need to pore over the results for errors. And
as there is a standard, it is clear what was intended, and who is responsible in case of a
mistake. So yes, this difference is a big deal. It is the difference between using a published
standard format and each individual using his own unspecified format. It is the difference
between painstaking, minute manual work and inspection, and reliable, automatic data transfer.

	Contents
	Figures
	Tables
	Preface
	1 Introduction
	1.1 Info, Questions & Feedback
	1.2 Record of Revisions
	1.2.1 Revision I1
	1.2.1.1 Acknowledgement

	1.2.2 Revision I2
	1.2.3 Revision I3
	1.2.4 Revision I4
	1.2.5 Revision J1

	1.3 Conformance
	1.4 About this Document
	1.4.1 Scope
	1.4.2 Formatting and Syntax Rules
	1.4.3 References
	1.4.4 Copyright and Intellectual Property

	1.5 History of the Gerber File Format
	1.6 About Ucamco

	2 Overview of the Gerber Format
	2.1 File Structure
	2.2 Graphics
	2.2.1 Graphics Objects
	2.2.2 Dark and Clear Polarity
	2.2.3 Operation Codes
	2.2.4 Stroking
	2.2.5 Graphics State

	2.3 Attributes
	2.4 Example Files
	2.4.1 Example 1
	2.4.2 Example 2
	2.4.3 Example 3

	2.5 Glossary

	3 Syntax
	3.1 Character Set
	3.2 Variable Types
	3.2.1 Integers
	3.2.2 Decimals
	3.2.3 Names
	3.2.4 Strings

	3.3 Data Blocks
	3.4 Statements
	3.4.1 Statements Overview
	3.4.2 Function Codes
	3.4.3 Coordinate Data Blocks
	3.4.4 Parameters

	4 Graphics
	4.1 Graphics Overview
	4.2 Linear Interpolation (G01)
	4.2.1 Data Block Format

	4.3 Circular Interpolation (G02/G03, G74/G75)
	4.3.1 Arc Overview
	4.3.2 Arc Definition
	4.3.3 Single Quadrant Mode
	4.3.3.1 Data Block Format
	4.3.3.2 Image
	4.3.3.3 Example

	4.3.4 Multi Quadrant Mode
	4.3.4.1 Data Block Format

	4.3.5 Arc Example
	4.3.6 Numerical instability in multi quadrant (G75) arcs
	4.3.7 Using G74 or G75 can result in a different image

	4.4 Operation Codes (D01/D02D03)
	4.5 Regions (G36/G37)
	4.5.1 Region Overview
	4.5.2 Example: a simple contour
	4.5.3 Examples: how to start a single contour
	4.5.4 Examples: Use D02 to start a second contour
	4.5.5 Example fle: Overlapping contours
	4.5.6 Example file: Non-overlapping and touching
	4.5.7 Example file: Overlapping and touching
	4.5.8 Using levels to create holes
	4.5.9 Example: a simple cut-in
	4.5.10 Examples: coincident draws
	4.5.11 Examples: valid and invalid cut-ins
	4.5.12

	4.6 Comment (G04)
	4.7 End-of-file (M02)
	4.8 FS – Format Specification
	4.8.1 Coordinate Format
	4.8.2 Zero Omission
	4.8.3 Absolute or Incremental Notation
	4.8.4 Data Block Format
	4.8.5 Examples

	4.9 MO – Mode
	4.9.1 Data Block Format
	4.9.2 Examples

	4.10 IP – Image Polarity
	4.10.1 Positive image polarity
	4.10.2 Negative image polarity
	4.10.3 Data Block Format
	4.10.4 Examples

	4.11 AD - Aperture Definition
	4.11.1 Syntax Rules
	4.11.2 Data Block Format
	4.11.3 Standard Apertures
	4.11.3.1 Circle
	4.11.3.2 Rectangle
	4.11.3.3 Obround
	4.11.3.4 Regular polygon

	4.11.4 Examples

	4.12 AM - Aperture Macro
	4.12.1 Data Block Format
	4.12.2 Primitives
	4.12.2.1 Comment, primitive code 0
	4.12.2.2 Circle, primitive code 1
	4.12.2.3 Vector Line, primitive code 2 or 20.
	4.12.2.4 Center Line, primitive code 21
	4.12.2.5 Lower Left Line, primitive code 22
	4.12.2.6 Outline, primitive code 4
	4.12.2.7
	4.12.2.8 Polygon, primitive code 5
	4.12.2.9 Moiré, primitive code 6
	4.12.2.10 Thermal, primitive code 7

	4.12.3 Parameter Contents
	4.12.4 Syntax Rules
	4.12.4.1 Variable values from an AD Parameter
	4.12.4.2 Arithmetic expressions
	4.12.4.3 Definition of a new variable

	4.12.5 Examples
	4.12.5.1 Fixed Modifier Values
	4.12.5.2 Variable Modifier Values
	4.12.5.3 Definition of a New Variable
	4.12.5.4 Rotation Modifier

	4.13 SR – Step and Repeat
	4.13.1 Data Block Format
	4.13.2 Examples

	4.14 LP – Level Polarity
	4.14.1 Data Block Format
	4.14.2 Examples

	5 Attributes
	5.1 Attributes Overview
	5.2 File attributes
	5.2.1 Standard File Attributes
	5.2.1.1 .FileFunction
	5.2.1.2 .Part
	5.2.1.3 .MD5
	5.2.1.4 .GerberVersion

	5.3 Aperture Attributes
	5.3.1 Aperture Attributes Overview
	5.3.2 Aperture Attributes Statements
	5.3.2.1 Set aperture attributes (TA)
	5.3.2.2 Delete attribute (TD)
	5.3.2.3 Select Region aperture (DR)
	5.3.2.4 Virtual aperture (AV)

	5.3.3 Standard Aperture Attributes
	5.3.3.1 .AperFunction
	5.3.3.2 Drill Tool Parameters
	5.3.3.2.1 .DrillTolerance

	5.3.4 Examples

	6 Most Common Errors & Bad Practice
	6.1 Most Common Errors
	6.2 Most Common Bad Practices

	7 Deprecated Format Elements
	7.1 Coordinate Data Blocks without Operation Code
	7.2 Open Contours
	7.3 Deprecated Statements
	7.3.1 AS – Axis Select
	7.3.1.1 Data Block Format
	7.3.1.2 Examples

	7.3.2 IN - Image Name
	7.3.2.1 Data Block Format
	7.3.2.2 Examples

	7.3.3 IR – Image Rotation
	7.3.3.1 Data Block Format
	7.3.3.2 Examples

	7.3.4 LN – Level Name
	7.3.4.1 Data Block Format
	7.3.4.2 Examples

	7.3.5 MI – Mirror Image
	7.3.5.1 Data Block Format
	7.3.5.2 Examples

	7.3.6 OF - Offset
	7.3.6.1 Data Block Format
	7.3.6.2 Examples

	7.3.7 SF – Scale Factor
	7.3.7.1 Data Block Format
	7.3.7.2 Examples

	7.4 Deprecated Standard Gerber (RS-274-D)
	7.4.1 Standard Gerber must not be used
	7.4.2 Origin and purpose of Standard Gerber
	7.4.3 Standard Gerber is a NC format, not an image format
	7.4.4 A fallacy

